BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 31625910)

  • 21. Afferent connections of dorsal and ventral agranular insular cortex in the hamster Mesocricetus auratus.
    Reep RL; Winans SS
    Neuroscience; 1982 May; 7(5):1265-88. PubMed ID: 7110587
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Connectivity of mouse somatosensory and prefrontal cortex examined with trans-synaptic tracing.
    DeNardo LA; Berns DS; DeLoach K; Luo L
    Nat Neurosci; 2015 Nov; 18(11):1687-1697. PubMed ID: 26457553
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hippocampal and thalamic afferents form distinct synaptic microcircuits in the mouse infralimbic frontal cortex.
    Graham K; Spruston N; Bloss EB
    Cell Rep; 2021 Oct; 37(3):109837. PubMed ID: 34686328
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Motor cortex broadly engages excitatory and inhibitory neurons in somatosensory barrel cortex.
    Kinnischtzke AK; Simons DJ; Fanselow EE
    Cereb Cortex; 2014 Aug; 24(8):2237-48. PubMed ID: 23547136
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Modular organization of callosal neurons in the sensomotor area of the cerebral cortex in the rabbit].
    Ezrokhi VL; Tarasova LIu; Dereviagin VI; Makarov FN
    Neirofiziologiia; 1984; 16(4):451-7. PubMed ID: 6493394
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Vibrissal motor cortex in the rat: connections with the barrel field.
    Izraeli R; Porter LL
    Exp Brain Res; 1995; 104(1):41-54. PubMed ID: 7621940
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Organization of cortical and thalamic input to pyramidal neurons in mouse motor cortex.
    Hooks BM; Mao T; Gutnisky DA; Yamawaki N; Svoboda K; Shepherd GM
    J Neurosci; 2013 Jan; 33(2):748-60. PubMed ID: 23303952
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Oligodendrocyte progenitor cells are paired with GABA neurons in the mouse dorsal cortex: Unbiased stereological analysis.
    Boulanger JJ; Messier C
    Neuroscience; 2017 Oct; 362():127-140. PubMed ID: 28827179
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The columnar and laminar organization of inhibitory connections to neocortical excitatory cells.
    Kätzel D; Zemelman BV; Buetfering C; Wölfel M; Miesenböck G
    Nat Neurosci; 2011 Jan; 14(1):100-7. PubMed ID: 21076426
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Afferent and efferent pathways of the vibrissal region of primary motor cortex in the mouse.
    Porter LL; White EL
    J Comp Neurol; 1983 Mar; 214(3):279-89. PubMed ID: 6853758
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Interhemispheric connections of cortical sensory areas in tree shrews.
    Cusick CG; MacAvoy MG; Kaas JH
    J Comp Neurol; 1985 May; 235(1):111-28. PubMed ID: 3989001
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparison of the connectional properties of the two forelimb areas of the rat sensorimotor cortex: support for the presence of a premotor or supplementary motor cortical area.
    Rouiller EM; Moret V; Liang F
    Somatosens Mot Res; 1993; 10(3):269-89. PubMed ID: 8237215
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Brain-Wide Maps of Synaptic Input to Cortical Interneurons.
    Wall NR; De La Parra M; Sorokin JM; Taniguchi H; Huang ZJ; Callaway EM
    J Neurosci; 2016 Apr; 36(14):4000-9. PubMed ID: 27053207
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The synaptic inputs and thalamic projections of two classes of layer 6 corticothalamic neurons in primary somatosensory cortex of the mouse.
    Whilden CM; Chevée M; An SY; Brown SP
    J Comp Neurol; 2021 Dec; 529(17):3751-3771. PubMed ID: 33908623
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Long-term changes in the efficiency of the excitatory and inhibitory connections in the neuronal micronetworks of the motor cortex induced by tetanization of the thalamic nuclei and the sensory cortex].
    Sil'kis IG
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1995; 45(5):932-47. PubMed ID: 8560940
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Termination of callosal afferents onto identified callosal projection neurons in the primary motor cortex of the mouse.
    Porter LL; White EL
    Neurosci Lett; 1984 Jun; 47(1):37-40. PubMed ID: 6087219
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Balancing bilateral sensory activity: callosal processing modulates sensory transmission through the contralateral thalamus by altering the response threshold.
    Li L; Ebner FF
    Exp Brain Res; 2006 Jul; 172(3):397-415. PubMed ID: 16429268
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Emerging roles of oligodendrocyte precursor cells in neural circuit development and remodeling.
    Buchanan J; da Costa NM; Cheadle L
    Trends Neurosci; 2023 Aug; 46(8):628-639. PubMed ID: 37286422
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Distribution of callosal fibers around the hand representations in monkey somatic sensory cortex.
    Jones EG; Hendry SH
    Neurosci Lett; 1980 Sep; 19(2):167-72. PubMed ID: 7052525
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Responses of cat motor cortex neurons to cortico-cortical and somatosensory inputs.
    Herman D; Kang R; MacGillis M; Zarzecki P
    Exp Brain Res; 1985; 57(3):598-604. PubMed ID: 2984038
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.