These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 31626269)

  • 1. Anion binding to mutants of the Schiff base counterion in heliorhodopsin 48C12.
    Singh M; Katayama K; Béjà O; Kandori H
    Phys Chem Chem Phys; 2019 Nov; 21(42):23663-23671. PubMed ID: 31626269
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inverse Hydrogen-Bonding Change Between the Protonated Retinal Schiff Base and Water Molecules upon Photoisomerization in Heliorhodopsin 48C12.
    Tomida S; Kitagawa S; Kandori H; Furutani Y
    J Phys Chem B; 2021 Aug; 125(30):8331-8341. PubMed ID: 34292728
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Halide binding by the D212N mutant of Bacteriorhodopsin affects hydrogen bonding of water in the active site.
    Shibata M; Yoshitsugu M; Mizuide N; Ihara K; Kandori H
    Biochemistry; 2007 Jun; 46(25):7525-35. PubMed ID: 17547422
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural basis for unique color tuning mechanism in heliorhodopsin.
    Tanaka T; Singh M; Shihoya W; Yamashita K; Kandori H; Nureki O
    Biochem Biophys Res Commun; 2020 Dec; 533(3):262-267. PubMed ID: 32951839
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrogen-bonding interaction of the protonated schiff base with halides in a chloride-pumping bacteriorhodopsin mutant.
    Shibata M; Ihara K; Kandori H
    Biochemistry; 2006 Sep; 45(35):10633-40. PubMed ID: 16939215
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anion-protein interactions during halorhodopsin pumping: halide binding at the protonated Schiff base.
    Walter TJ; Braiman MS
    Biochemistry; 1994 Feb; 33(7):1724-33. PubMed ID: 8110775
    [TBL] [Abstract][Full Text] [Related]  

  • 7. FTIR spectroscopy of the all-trans form of Anabaena sensory rhodopsin at 77 K: hydrogen bond of a water between the Schiff base and Asp75.
    Furutani Y; Kawanabe A; Jung KH; Kandori H
    Biochemistry; 2005 Sep; 44(37):12287-96. PubMed ID: 16156642
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrogen-bonding alterations of the protonated Schiff base and water molecule in the chloride pump of Natronobacterium pharaonis.
    Shibata M; Muneda N; Sasaki T; Shimono K; Kamo N; Demura M; Kandori H
    Biochemistry; 2005 Sep; 44(37):12279-86. PubMed ID: 16156641
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resonance Raman Determination of Chromophore Structures of Heliorhodopsin Photointermediates.
    Urui T; Mizuno M; Otomo A; Kandori H; Mizutani Y
    J Phys Chem B; 2021 Jul; 125(26):7155-7162. PubMed ID: 34167296
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anions stabilize a metarhodopsin II-like photoproduct with a protonated Schiff base.
    Vogel R; Fan GB; Siebert F; Sheves M
    Biochemistry; 2001 Nov; 40(44):13342-52. PubMed ID: 11683644
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photochemical Characterization of a New Heliorhodopsin from the Gram-Negative Eubacterium Bellilinea caldifistulae (BcHeR) and Comparison with Heliorhodopsin-48C12.
    Shibukawa A; Kojima K; Nakajima Y; Nishimura Y; Yoshizawa S; Sudo Y
    Biochemistry; 2019 Jul; 58(26):2934-2943. PubMed ID: 31150215
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low pH structure of heliorhodopsin reveals chloride binding site and intramolecular signaling pathway.
    Besaw JE; Reichenwallner J; De Guzman P; Tucs A; Kuo A; Morizumi T; Tsuda K; Sljoka A; Miller RJD; Ernst OP
    Sci Rep; 2022 Aug; 12(1):13955. PubMed ID: 35977989
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Light-Driven Proton, Sodium Ion, and Chloride Ion Transfer Mechanisms in Rhodopsins: SAC-CI Study.
    Miyahara T; Nakatsuji H
    J Phys Chem A; 2019 Mar; 123(9):1766-1784. PubMed ID: 30762358
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydration of the counterion of the Schiff base in the chloride-transporting mutant of bacteriorhodopsin: FTIR and FT-raman studies of the effects of anion binding when Asp85 is replaced with a neutral residue.
    Chon YS; Sasaki J; Kandori H; Brown LS; Lanyi JK; Needleman R; Maeda A
    Biochemistry; 1996 Nov; 35(45):14244-50. PubMed ID: 8916909
    [TBL] [Abstract][Full Text] [Related]  

  • 15. FTIR study of the retinal Schiff base and internal water molecules of proteorhodopsin.
    Ikeda D; Furutani Y; Kandori H
    Biochemistry; 2007 May; 46(18):5365-73. PubMed ID: 17428036
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of the retinylidene Schiff base counterion in rhodopsin in determining wavelength absorbance and Schiff base pKa.
    Sakmar TP; Franke RR; Khorana HG
    Proc Natl Acad Sci U S A; 1991 Apr; 88(8):3079-83. PubMed ID: 2014228
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Localization of the retinal protonated Schiff base counterion in rhodopsin.
    Han M; DeDecker BS; Smith SO
    Biophys J; 1993 Aug; 65(2):899-906. PubMed ID: 8105993
    [TBL] [Abstract][Full Text] [Related]  

  • 18. pH-dependent absorption spectra of rhodopsin mutant E113Q: On the role of counterions and protein.
    Xie P; Zhou P; Alsaedi A; Zhang Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Mar; 174():25-31. PubMed ID: 27865136
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mutation Study of Heliorhodopsin 48C12.
    Singh M; Inoue K; Pushkarev A; Béjà O; Kandori H
    Biochemistry; 2018 Aug; 57(33):5041-5049. PubMed ID: 30036039
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of glutamic acid 113 as the Schiff base proton acceptor in the metarhodopsin II photointermediate of rhodopsin.
    Jäger F; Fahmy K; Sakmar TP; Siebert F
    Biochemistry; 1994 Sep; 33(36):10878-82. PubMed ID: 7916209
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.