BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 31626371)

  • 1. Assessment of corneal viscoelasticity using elastic wave optical coherence elastography.
    Jin Z; Zhou Y; Shen M; Wang Y; Lu F; Zhu D
    J Biophotonics; 2020 Jan; 13(1):e201960074. PubMed ID: 31626371
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative assessment of corneal viscoelasticity using optical coherence elastography and a modified Rayleigh-Lamb equation.
    Han Z; Aglyamov SR; Li J; Singh M; Wang S; Vantipalli S; Wu C; Liu CH; Twa MD; Larin KV
    J Biomed Opt; 2015 Feb; 20(2):20501. PubMed ID: 25649624
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measuring mechanical wave speed, dispersion, and viscoelastic modulus of the cornea using optical coherence elastography.
    Ramier A; Tavakol B; Yun SH
    Opt Express; 2019 Jun; 27(12):16635-16649. PubMed ID: 31252887
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical coherence elastography assessment of corneal viscoelasticity with a modified Rayleigh-Lamb wave model.
    Han Z; Li J; Singh M; Wu C; Liu CH; Raghunathan R; Aglyamov SR; Vantipalli S; Twa MD; Larin KV
    J Mech Behav Biomed Mater; 2017 Feb; 66():87-94. PubMed ID: 27838594
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatial mapping of corneal biomechanical properties using wave-based optical coherence elastography.
    Wang Q; Chen Y; Shen K; Zhou X; Shen M; Lu F; Zhu D
    J Biophotonics; 2024 Jun; 17(6):e202300534. PubMed ID: 38453148
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical coherence elastography for assessing the influence of intraocular pressure on elastic wave dispersion in the cornea.
    Sun MG; Son T; Crutison J; Guaiquil V; Lin S; Nammari L; Klatt D; Yao X; Rosenblatt MI; Royston TJ
    J Mech Behav Biomed Mater; 2022 Apr; 128():105100. PubMed ID: 35121423
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Feasibility study of using the dispersion of surface acoustic wave impulse for viscoelasticity characterization in tissue mimicking phantoms.
    Zhou K; Li C; Chen S; Nabi G; Huang Z
    J Biophotonics; 2019 Jan; 12(1):e201800177. PubMed ID: 30073776
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Does group velocity always reflect elastic modulus in shear wave elastography?
    Pelivanov I; Gao L; Pitre J; Kirby M; Song S; Li D; Shen T; Wang R; O'Donnell M
    J Biomed Opt; 2019 Jul; 24(7):1-11. PubMed ID: 31342691
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Longitudinal assessment of the effect of alkali burns on corneal biomechanical properties using optical coherence elastography.
    Mekonnen T; Lin X; Zevallos-Delgado C; Singh M; Aglyamov SR; Coulson-Thomas VJ; Larin KV
    J Biophotonics; 2022 Aug; 15(8):e202200022. PubMed ID: 35460537
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High Frequency Ultrasound Elastography for Estimating the Viscoelastic Properties of the Cornea Using Lamb Wave Model.
    Weng CC; Chen PY; Chou D; Shih CC; Huang CC
    IEEE Trans Biomed Eng; 2021 Sep; 68(9):2637-2644. PubMed ID: 33306463
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reverberant 3D optical coherence elastography maps the elasticity of individual corneal layers.
    Zvietcovich F; Pongchalee P; Meemon P; Rolland JP; Parker KJ
    Nat Commun; 2019 Oct; 10(1):4895. PubMed ID: 31653846
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurement of quantitative viscoelasticity of bovine corneas based on lamb wave dispersion properties.
    Zhang X; Yin Y; Guo Y; Fan N; Lin H; Liu F; Diao X; Dong C; Chen X; Wang T; Chen S
    Ultrasound Med Biol; 2015 May; 41(5):1461-72. PubMed ID: 25638310
    [TBL] [Abstract][Full Text] [Related]  

  • 13. All-optical noncontact phase-domain photoacoustic elastography.
    Yang F; Chen Z; Xing D
    Opt Lett; 2021 Oct; 46(19):5063-5066. PubMed ID: 34598269
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantification of biomechanical properties of human corneal scar using acoustic radiation force optical coherence elastography.
    Han X; Zhang Y; Zhu Y; Zhao Y; Yang H; Liu G; Ai S; Wang Y; Xie C; Shi J; Zhang T; Huang G; He X
    Exp Biol Med (Maywood); 2022 Mar; 247(6):462-469. PubMed ID: 34861122
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous tensile and shear measurement of the human cornea in vivo using S0- and A0-wave optical coherence elastography.
    Li GY; Feng X; Yun SH
    Acta Biomater; 2024 Feb; 175():114-122. PubMed ID: 38101555
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of the influence of viscoelasticity of cornea in animal ex vivo model using air-puff optical coherence tomography and corneal hysteresis.
    Maczynska E; Karnowski K; Szulzycki K; Malinowska M; Dolezyczek H; Cichanski A; Wojtkowski M; Kaluzny B; Grulkowski I
    J Biophotonics; 2019 Feb; 12(2):e201800154. PubMed ID: 30239154
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical coherence elastography to evaluate depth-resolved elasticity of tissue.
    Yang C; Xiang Z; Li Z; Nan N; Wang X
    Opt Express; 2022 Mar; 30(6):8709-8722. PubMed ID: 35299317
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Noncontact Elastic Wave Imaging Optical Coherence Elastography for Evaluating Changes in Corneal Elasticity Due to Crosslinking.
    Singh M; Li J; Vantipalli S; Wang S; Han Z; Nair A; Aglyamov SR; Twa MD; Larin KV
    IEEE J Sel Top Quantum Electron; 2016; 22(3):. PubMed ID: 27547022
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In Vivo Human Corneal Shear-wave Optical Coherence Elastography.
    Lan G; Aglyamov SR; Larin KV; Twa MD
    Optom Vis Sci; 2021 Jan; 98(1):58-63. PubMed ID: 33394932
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantifying viscosity and elasticity using holographic imaging by Rayleigh wave dispersion.
    Singh A; Pati F; John R
    Opt Lett; 2022 May; 47(9):2214-2217. PubMed ID: 35486763
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.