These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 31626374)

  • 1. Electrolyte Effects on the Electrocatalytic Performance of Iridium-Based Nanoparticles for Oxygen Evolution in Rotating Disc Electrodes.
    Arminio-Ravelo JA; Jensen AW; Jensen KD; Quinson J; Escudero-Escribano M
    Chemphyschem; 2019 Nov; 20(22):2956-2963. PubMed ID: 31626374
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrocatalytic oxygen evolution over supported small amorphous Ni-Fe nanoparticles in alkaline electrolyte.
    Qiu Y; Xin L; Li W
    Langmuir; 2014 Jul; 30(26):7893-901. PubMed ID: 24914708
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rational Design of Rhodium-Iridium Alloy Nanoparticles as Highly Active Catalysts for Acidic Oxygen Evolution.
    Guo H; Fang Z; Li H; Fernandez D; Henkelman G; Humphrey SM; Yu G
    ACS Nano; 2019 Nov; 13(11):13225-13234. PubMed ID: 31668069
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-Performance Supported Iridium Oxohydroxide Water Oxidation Electrocatalysts.
    Massué C; Pfeifer V; Huang X; Noack J; Tarasov A; Cap S; Schlögl R
    ChemSusChem; 2017 May; 10(9):1943-1957. PubMed ID: 28164475
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic Structure Evolution of Composition Segregated Iridium-Nickel Rhombic Dodecahedra toward Efficient Oxygen Evolution Electrocatalysis.
    Pi Y; Shao Q; Zhu X; Huang X
    ACS Nano; 2018 Jul; 12(7):7371-7379. PubMed ID: 29924585
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent Advances in Iridium-based Electrocatalysts for Acidic Electrolyte Oxidation.
    Li W; Bu Y; Ge X; Li F; Han GF; Baek JB
    ChemSusChem; 2024 Jul; 17(13):e202400295. PubMed ID: 38362788
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-covalent interactions in water electrolysis: influence on the activity of Pt(111) and iridium oxide catalysts in acidic media.
    Ganassin A; Colic V; Tymoczko J; Bandarenka AS; Schuhmann W
    Phys Chem Chem Phys; 2015 Apr; 17(13):8349-55. PubMed ID: 25412811
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrochemical characterization of manganese oxides as a water oxidation catalyst in proton exchange membrane electrolysers.
    Hayashi T; Bonnet-Mercier N; Yamaguchi A; Suetsugu K; Nakamura R
    R Soc Open Sci; 2019 May; 6(5):190122. PubMed ID: 31218053
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Iridium-Based Catalysts for Solid Polymer Electrolyte Electrocatalytic Water Splitting.
    Wang C; Lan F; He Z; Xie X; Zhao Y; Hou H; Guo L; Murugadoss V; Liu H; Shao Q; Gao Q; Ding T; Wei R; Guo Z
    ChemSusChem; 2019 Apr; 12(8):1576-1590. PubMed ID: 30656828
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ruthenium Nanoparticles for Catalytic Water Splitting.
    Creus J; De Tovar J; Romero N; García-Antón J; Philippot K; Bofill R; Sala X
    ChemSusChem; 2019 Jun; 12(12):2493-2514. PubMed ID: 30957439
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High Catalytic Activity of Amorphous Ir-Pi for Oxygen Evolution Reaction.
    Irshad A; Munichandraiah N
    ACS Appl Mater Interfaces; 2015 Jul; 7(29):15765-76. PubMed ID: 26132593
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Size and Electronic Modulation of Iridium Nanoparticles on Nitrogen-Functionalized Carbon toward Advanced Electrocatalysts for Alkaline Water Splitting.
    Wang H; Ming M; Hu M; Xu C; Wang Y; Zhang Y; Gao D; Bi J; Fan G; Hu JS
    ACS Appl Mater Interfaces; 2018 Jul; 10(26):22340-22347. PubMed ID: 29900740
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microwave-Assisted Synthesis of Stable and Highly Active Ir Oxohydroxides for Electrochemical Oxidation of Water.
    Massué C; Huang X; Tarasov A; Ranjan C; Cap S; Schlögl R
    ChemSusChem; 2017 May; 10(9):1958-1968. PubMed ID: 28164470
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Facile Synthesis of IrCu Microspheres Based on Polyol Method and Study on Their Electro-Catalytic Performances to Oxygen Evolution Reaction.
    Liu X; Li Z; Zhou L; Wang K; Zhao X; Li Q; Deng Y
    Nanomaterials (Basel); 2019 Aug; 9(8):. PubMed ID: 31405095
    [TBL] [Abstract][Full Text] [Related]  

  • 15. IrCuNi Deeply Concave Nanocubes as Highly Active Oxygen Evolution Reaction Electrocatalyst in Acid Electrolyte.
    Liu D; Lv Q; Lu S; Fang J; Zhang Y; Wang X; Xue Y; Zhu W; Zhuang Z
    Nano Lett; 2021 Apr; 21(7):2809-2816. PubMed ID: 33733796
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strain-Induced Electronic Structure Modulation on MnO
    Zhao W; Xu F; Liu L; Liu M; Weng B
    Adv Mater; 2023 Dec; 35(49):e2308060. PubMed ID: 37845788
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Simple Method for Synthesizing Highly Active Amorphous Iridium Oxide for Oxygen Evolution under Acidic Conditions.
    Salimi P; Najafpour MM
    Chemistry; 2020 Dec; 26(71):17063-17068. PubMed ID: 32852097
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fe/Ni bimetal organic framework as efficient oxygen evolution catalyst with low overpotential.
    Zheng F; Zhang Z; Xiang D; Li P; Du C; Zhuang Z; Li X; Chen W
    J Colloid Interface Sci; 2019 Nov; 555():541-547. PubMed ID: 31404838
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Innovative Strategies for Electrocatalytic Water Splitting.
    You B; Sun Y
    Acc Chem Res; 2018 Jul; 51(7):1571-1580. PubMed ID: 29537825
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mn-Dopant Differentiating the Ru and Ir Oxidation States in Catalytic Oxides Toward Durable Oxygen Evolution Reaction in Acidic Electrolyte.
    Joo J; Park Y; Kim J; Kwon T; Jun M; Ahn D; Baik H; Jang JH; Kim JY; Lee K
    Small Methods; 2022 Jan; 6(1):e2101236. PubMed ID: 35041273
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.