These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 31626565)

  • 1. Text Mining in Electronic Medical Records Enables Quick and Efficient Identification of Pregnancy Cases Occurring After Breast Cancer.
    Labrosse J; Lam T; Sebbag C; Benque M; Abdennebi I; Merckelbagh H; Osdoit M; Priour M; Guerin J; Balezeau T; Grandal B; Coussy F; Bobrie A; Ferrer L; Laas E; Feron JG; Reyal F; Hamy AS
    JCO Clin Cancer Inform; 2019 Oct; 3():1-12. PubMed ID: 31626565
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extracting information from the text of electronic medical records to improve case detection: a systematic review.
    Ford E; Carroll JA; Smith HE; Scott D; Cassell JA
    J Am Med Inform Assoc; 2016 Sep; 23(5):1007-15. PubMed ID: 26911811
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Text-mining in electronic healthcare records can be used as efficient tool for screening and data collection in cardiovascular trials: a multicenter validation study.
    van Dijk WB; Fiolet ATL; Schuit E; Sammani A; Groenhof TKJ; van der Graaf R; de Vries MC; Alings M; Schaap J; Asselbergs FW; Grobbee DE; Groenwold RHH; Mosterd A
    J Clin Epidemiol; 2021 Apr; 132():97-105. PubMed ID: 33248277
    [TBL] [Abstract][Full Text] [Related]  

  • 4. From free-text electronic health records to structured cohorts: Onconum, an innovative methodology for real-world data mining in breast cancer.
    Simoulin A; Thiebaut N; Neuberger K; Ibnouhsein I; Brunel N; Viné R; Bousquet N; Latapy J; Reix N; Molière S; Lodi M; Mathelin C
    Comput Methods Programs Biomed; 2023 Oct; 240():107693. PubMed ID: 37453367
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development and Validation of a Natural Language Processing Algorithm for Extracting Clinical and Pathological Features of Breast Cancer From Pathology Reports.
    Munzone E; Marra A; Comotto F; Guercio L; Sangalli CA; Lo Cascio M; Pagan E; Sangalli D; Bigoni I; Porta FM; D'Ercole M; Ritorti F; Bagnardi V; Fusco N; Curigliano G
    JCO Clin Cancer Inform; 2024 Aug; 8():e2400034. PubMed ID: 39137368
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NLP based congestive heart failure case finding: A prospective analysis on statewide electronic medical records.
    Wang Y; Luo J; Hao S; Xu H; Shin AY; Jin B; Liu R; Deng X; Wang L; Zheng L; Zhao Y; Zhu C; Hu Z; Fu C; Hao Y; Zhao Y; Jiang Y; Dai D; Culver DS; Alfreds ST; Todd R; Stearns F; Sylvester KG; Widen E; Ling XB
    Int J Med Inform; 2015 Dec; 84(12):1039-47. PubMed ID: 26254876
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development and validation of a heart failure with preserved ejection fraction cohort using electronic medical records.
    Patel YR; Robbins JM; Kurgansky KE; Imran T; Orkaby AR; McLean RR; Ho YL; Cho K; Michael Gaziano J; Djousse L; Gagnon DR; Joseph J
    BMC Cardiovasc Disord; 2018 Jun; 18(1):128. PubMed ID: 29954337
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A hybrid approach to identify subsequent breast cancer using pathology and automated health information data.
    Haque R; Shi J; Schottinger JE; Ahmed SA; Chung J; Avila C; Lee VS; Cheetham TC; Habel LA; Fletcher SW; Kwan ML
    Med Care; 2015 Apr; 53(4):380-5. PubMed ID: 25769058
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automated chart review utilizing natural language processing algorithm for asthma predictive index.
    Kaur H; Sohn S; Wi CI; Ryu E; Park MA; Bachman K; Kita H; Croghan I; Castro-Rodriguez JA; Voge GA; Liu H; Juhn YJ
    BMC Pulm Med; 2018 Feb; 18(1):34. PubMed ID: 29439692
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A rule-based electronic phenotyping algorithm for detecting clinically relevant cardiovascular disease cases.
    Esteban S; Rodríguez Tablado M; Ricci RI; Terrasa S; Kopitowski K
    BMC Res Notes; 2017 Jul; 10(1):281. PubMed ID: 28705240
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Robust e-Epidemiology Tool in Phenotyping Heart Failure with Differentiation for Preserved and Reduced Ejection Fraction: the Electronic Medical Records and Genomics (eMERGE) Network.
    Bielinski SJ; Pathak J; Carrell DS; Takahashi PY; Olson JE; Larson NB; Liu H; Sohn S; Wells QS; Denny JC; Rasmussen-Torvik LJ; Pacheco JA; Jackson KL; Lesnick TG; Gullerud RE; Decker PA; Pereira NL; Ryu E; Dart RA; Peissig P; Linneman JG; Jarvik GP; Larson EB; Bock JA; Tromp GC; de Andrade M; Roger VL
    J Cardiovasc Transl Res; 2015 Nov; 8(8):475-83. PubMed ID: 26195183
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of natural language processing in electronic medical records to identify pregnant women with suicidal behavior: towards a solution to the complex classification problem.
    Zhong QY; Mittal LP; Nathan MD; Brown KM; Knudson González D; Cai T; Finan S; Gelaye B; Avillach P; Smoller JW; Karlson EW; Cai T; Williams MA
    Eur J Epidemiol; 2019 Feb; 34(2):153-162. PubMed ID: 30535584
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using a Text-Mining Approach to Evaluate the Quality of Nursing Records.
    Chang HM; Chiou SF; Liu HY; Yu HC
    Stud Health Technol Inform; 2016; 225():813-4. PubMed ID: 27332355
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automated data extraction of electronic medical records: Validity of data mining to construct research databases for eligibility in gastroenterological clinical trials.
    Joseph N; Lindblad I; Zaker S; Elfversson S; Albinzon M; Ødegård Ø; Hantler L; Hellström PM
    Ups J Med Sci; 2022; 127():. PubMed ID: 35173908
    [TBL] [Abstract][Full Text] [Related]  

  • 15. EMR-Based Phenotyping of Ischemic Stroke Using Supervised Machine Learning and Text Mining Techniques.
    Sung SF; Lin CY; Hu YH
    IEEE J Biomed Health Inform; 2020 Oct; 24(10):2922-2931. PubMed ID: 32142458
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Text mining electronic health records to identify hospital adverse events.
    Gerdes LU; Hardahl C
    Stud Health Technol Inform; 2013; 192():1145. PubMed ID: 23920919
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A text-mining approach to obtain detailed treatment information from free-text fields in population-based cancer registries: A study of non-small cell lung cancer in California.
    Maguire FB; Morris CR; Parikh-Patel A; Cress RD; Keegan THM; Li CS; Lin PS; Kizer KW
    PLoS One; 2019; 14(2):e0212454. PubMed ID: 30794610
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Data-Driven Information Extraction from Chinese Electronic Medical Records.
    Xu D; Zhang M; Zhao T; Ge C; Gao W; Wei J; Zhu KQ
    PLoS One; 2015; 10(8):e0136270. PubMed ID: 26295801
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automated NLP Extraction of Clinical Rationale for Treatment Discontinuation in Breast Cancer.
    Alkaitis MS; Agrawal MN; Riely GJ; Razavi P; Sontag D
    JCO Clin Cancer Inform; 2021 May; 5():550-560. PubMed ID: 33989016
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extracting Primary Open-Angle Glaucoma from Electronic Medical Records for Genetic Association Studies.
    Restrepo NA; Farber-Eger E; Goodloe R; Haines JL; Crawford DC
    PLoS One; 2015; 10(6):e0127817. PubMed ID: 26061293
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.