These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 31626662)

  • 1. Experimentally validated simulation of coronary stents considering different dogboning ratios and asymmetric stent positioning.
    Wiesent L; Schultheiß U; Schmid C; Schratzenstaller T; Nonn A
    PLoS One; 2019; 14(10):e0224026. PubMed ID: 31626662
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Suggestion of potential stent design parameters to reduce restenosis risk driven by foreshortening or dogboning due to non-uniform balloon-stent expansion.
    Lim D; Cho SK; Park WP; Kristensson A; Ko JY; Al-Hassani ST; Kim HS
    Ann Biomed Eng; 2008 Jul; 36(7):1118-29. PubMed ID: 18437572
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Finite element analysis and stent design: Reduction of dogboning.
    De Beule M; Van Impe R; Verhegghe B; Segers P; Verdonck P
    Technol Health Care; 2006; 14(4-5):233-41. PubMed ID: 17065746
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design optimization of stent and its dilatation balloon using kriging surrogate model.
    Li H; Liu T; Wang M; Zhao D; Qiao A; Wang X; Gu J; Li Z; Zhu B
    Biomed Eng Online; 2017 Jan; 16(1):13. PubMed ID: 28086895
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-objective optimization of coronary stent using Kriging surrogate model.
    Li H; Gu J; Wang M; Zhao D; Li Z; Qiao A; Zhu B
    Biomed Eng Online; 2016 Dec; 15(Suppl 2):148. PubMed ID: 28155700
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Finite element simulation and testing of cobalt-chromium stent: a parametric study on radial strength, recoil, foreshortening, and dogboning.
    Kumar A; Bhatnagar N
    Comput Methods Biomech Biomed Engin; 2021 Feb; 24(3):245-259. PubMed ID: 33021106
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulation of a balloon expandable stent in a realistic coronary artery-Determination of the optimum modelling strategy.
    Zahedmanesh H; John Kelly D; Lally C
    J Biomech; 2010 Aug; 43(11):2126-32. PubMed ID: 20452594
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical Analysis for Non-Uniformity of Balloon-Expandable Stent Deployment Driven by Dogboning and Foreshortening.
    Rahinj GB; Chauhan HS; Sirivella ML; Satyanarayana MV; Ramanan L
    Cardiovasc Eng Technol; 2022 Apr; 13(2):247-264. PubMed ID: 34431035
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of the transient expansion behavior and design optimization of coronary stents by finite element method.
    Wang WQ; Liang DK; Yang DZ; Qi M
    J Biomech; 2006; 39(1):21-32. PubMed ID: 16271584
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Computational Study of Mechanical Performance of Bioresorbable Polymeric Stents with Design Variations.
    Qiu TY; Zhao LG; Song M
    Cardiovasc Eng Technol; 2019 Mar; 10(1):46-60. PubMed ID: 30536211
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimizing through computational modeling to reduce dogboning of functionally graded coronary stent material.
    Khosravi A; Akbari A; Bahreinizad H; Salimi Bani M; Karimi A
    J Mater Sci Mater Med; 2017 Aug; 28(9):142. PubMed ID: 28819891
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the importance of modeling balloon folding, pleating, and stent crimping: An FE study comparing experimental inflation tests.
    Geith MA; Swidergal K; Hochholdinger B; Schratzenstaller TG; Wagner M; Holzapfel GA
    Int J Numer Method Biomed Eng; 2019 Nov; 35(11):e3249. PubMed ID: 31400057
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Finite element analysis of balloon-expandable coronary stent deployment: influence of angioplasty balloon configuration.
    Martin D; Boyle F
    Int J Numer Method Biomed Eng; 2013 Nov; 29(11):1161-75. PubMed ID: 23696255
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of tissue prolapse after balloon-expandable stenting: influence of stent cell geometry.
    Capelli C; Gervaso F; Petrini L; Dubini G; Migliavacca F
    Med Eng Phys; 2009 May; 31(4):441-7. PubMed ID: 19109049
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical behavior of coronary stents investigated through the finite element method.
    Migliavacca F; Petrini L; Colombo M; Auricchio F; Pietrabissa R
    J Biomech; 2002 Jun; 35(6):803-11. PubMed ID: 12021000
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sequential Structural and Fluid Dynamics Analysis of Balloon-Expandable Coronary Stents: A Multivariable Statistical Analysis.
    Martin D; Boyle F
    Cardiovasc Eng Technol; 2015 Sep; 6(3):314-28. PubMed ID: 26577363
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling of stents exhibiting negative Poisson's ratio effect.
    Raamachandran J; Jayavenkateshwaran K
    Comput Methods Biomech Biomed Engin; 2007 Aug; 10(4):245-55. PubMed ID: 17671858
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Realistic finite element-based stent design: the impact of balloon folding.
    De Beule M; Mortier P; Carlier SG; Verhegghe B; Van Impe R; Verdonck P
    J Biomech; 2008; 41(2):383-9. PubMed ID: 17920068
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Future Balloon-Expandable Stents: High or Low-Strength Materials?
    Khalilimeybodi A; Alishzadeh Khoei A; Sharif-Kashani B
    Cardiovasc Eng Technol; 2020 Apr; 11(2):188-204. PubMed ID: 31836964
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical study of the uniformity of balloon-expandable stent deployment.
    Mortier P; De Beule M; Carlier SG; Van Impe R; Verhegghe B; Verdonck P
    J Biomech Eng; 2008 Apr; 130(2):021018. PubMed ID: 18412505
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.