These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 31626959)
21. Human adipose-derived mesenchymal stem cells systemically injected promote peripheral nerve regeneration in the mouse model of sciatic crush. Marconi S; Castiglione G; Turano E; Bissolotti G; Angiari S; Farinazzo A; Constantin G; Bedogni G; Bedogni A; Bonetti B Tissue Eng Part A; 2012 Jun; 18(11-12):1264-72. PubMed ID: 22332955 [TBL] [Abstract][Full Text] [Related]
22. Sciatic nerve regeneration by cocultured Schwann cells and stem cells on microporous nerve conduits. Dai LG; Huang GS; Hsu SH Cell Transplant; 2013; 22(11):2029-39. PubMed ID: 23192007 [TBL] [Abstract][Full Text] [Related]
23. Proteomic analysis of mesenchymal to Schwann cell transdifferentiation. Sharma AD; Wiederin J; Uz M; Ciborowski P; Mallapragada SK; Gendelman HE; Sakaguchi DS J Proteomics; 2017 Aug; 165():93-101. PubMed ID: 28629798 [TBL] [Abstract][Full Text] [Related]
24. The effect of mesenchymal stem cells and surgical angiogenesis on immune response and revascularization of acellular nerve allografts in a rat sciatic defect model. Bedar M; Saffari TM; Johnson AJ; Shin AY J Plast Reconstr Aesthet Surg; 2022 Aug; 75(8):2809-2820. PubMed ID: 35383001 [TBL] [Abstract][Full Text] [Related]
25. The enhanced performance of bone allografts using osteogenic-differentiated adipose-derived mesenchymal stem cells. Schubert T; Xhema D; Vériter S; Schubert M; Behets C; Delloye C; Gianello P; Dufrane D Biomaterials; 2011 Dec; 32(34):8880-91. PubMed ID: 21872925 [TBL] [Abstract][Full Text] [Related]
26. Nerve repair with adipose-derived stem cells protects dorsal root ganglia neurons from apoptosis. Reid AJ; Sun M; Wiberg M; Downes S; Terenghi G; Kingham PJ Neuroscience; 2011 Dec; 199():515-22. PubMed ID: 22020320 [TBL] [Abstract][Full Text] [Related]
29. Chondrogenic differentiation of synovial fluid mesenchymal stem cells on human meniscus-derived decellularized matrix requires exogenous growth factors. Liang Y; Idrees E; Szojka ARA; Andrews SHJ; Kunze M; Mulet-Sierra A; Jomha NM; Adesida AB Acta Biomater; 2018 Oct; 80():131-143. PubMed ID: 30267878 [TBL] [Abstract][Full Text] [Related]
30. Orthotopic Transplantation of Achilles Tendon Allograft in Rats: With or without Incorporation of Autologous Mesenchymal Stem Cells. Aynardi M; Zahoor T; Mitchell R; Loube J; Feltham T; Manandhar L; Paudel S; Schon L; Zhang Z Cell Transplant; 2018 Feb; 27(2):245-255. PubMed ID: 29637821 [TBL] [Abstract][Full Text] [Related]
31. The Combination of Adipose-derived Schwann-like Cells and Acellular Nerve Allografts Promotes Sciatic Nerve Regeneration and Repair through the JAK2/STAT3 Signaling Pathway in Rats. Fu XM; Wang Y; Fu WL; Liu DH; Zhang CY; Wang QL; Tong XJ Neuroscience; 2019 Dec; 422():134-145. PubMed ID: 31682951 [TBL] [Abstract][Full Text] [Related]
33. Targeted stimulation of MSCs in peripheral nerve repair. Mathot F; Shin AY; Van Wijnen AJ Gene; 2019 Aug; 710():17-23. PubMed ID: 30849542 [TBL] [Abstract][Full Text] [Related]
34. The key components of Schwann cell-like differentiation medium and their effects on gene expression pattern of adipose-derived stem cells. Orbay H; Little CJ; Lankford L; Olson CA; Sahar DE Ann Plast Surg; 2015 May; 74(5):584-8. PubMed ID: 25643192 [TBL] [Abstract][Full Text] [Related]
35. Enhancing therapeutic potential: Human adipose-derived mesenchymal stem cells modified with recombinant adeno-associated virus expressing VEGF165 gene for peripheral nerve injury. Jiang S; Chen B; Sun ZY Kaohsiung J Med Sci; 2024 Sep; 40(9):819-829. PubMed ID: 39101328 [TBL] [Abstract][Full Text] [Related]
36. Peripheral glial cell differentiation from neurospheres derived from adipose mesenchymal stem cells. Radtke C; Schmitz B; Spies M; Kocsis JD; Vogt PM Int J Dev Neurosci; 2009 Dec; 27(8):817-23. PubMed ID: 19699793 [TBL] [Abstract][Full Text] [Related]
37. Adipose-derived stem cell sheets functionalized by hybrid baculovirus for prolonged GDNF expression and improved nerve regeneration. Hsu MN; Liao HT; Li KC; Chen HH; Yen TC; Makarevich P; Parfyonova Y; Hu YC Biomaterials; 2017 Sep; 140():189-200. PubMed ID: 28658635 [TBL] [Abstract][Full Text] [Related]
38. Engineered substrates with imprinted cell-like topographies induce direct differentiation of adipose-derived mesenchymal stem cells into Schwann cells. Moosazadeh Moghaddam M; Bonakdar S; Shokrgozar MA; Zaminy A; Vali H; Faghihi S Artif Cells Nanomed Biotechnol; 2019 Dec; 47(1):1022-1035. PubMed ID: 30942113 [TBL] [Abstract][Full Text] [Related]
39. Gelatin-based 3D conduits for transdifferentiation of mesenchymal stem cells into Schwann cell-like phenotypes. Uz M; Büyüköz M; Sharma AD; Sakaguchi DS; Altinkaya SA; Mallapragada SK Acta Biomater; 2017 Apr; 53():293-306. PubMed ID: 28213098 [TBL] [Abstract][Full Text] [Related]
40. Phenotypic and functional characteristics of mesenchymal stem cells differentiated along a Schwann cell lineage. Caddick J; Kingham PJ; Gardiner NJ; Wiberg M; Terenghi G Glia; 2006 Dec; 54(8):840-9. PubMed ID: 16977603 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]