These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
481 related articles for article (PubMed ID: 31627019)
1. Automated detection of shockable and non-shockable arrhythmia using novel wavelet-based ECG features. Sharma M; Singh S; Kumar A; San Tan R; Acharya UR Comput Biol Med; 2019 Dec; 115():103446. PubMed ID: 31627019 [TBL] [Abstract][Full Text] [Related]
2. Detection of Shockable Ventricular Arrhythmia using Variational Mode Decomposition. Tripathy RK; Sharma LN; Dandapat S J Med Syst; 2016 Apr; 40(4):79. PubMed ID: 26798076 [TBL] [Abstract][Full Text] [Related]
3. Sequential algorithm for life threatening cardiac pathologies detection based on mean signal strength and EMD functions. Anas EM; Lee SY; Hasan MK Biomed Eng Online; 2010 Sep; 9():43. PubMed ID: 20815909 [TBL] [Abstract][Full Text] [Related]
4. Enhancing the accuracy of shock advisory algorithms in automated external defibrillators during ongoing cardiopulmonary resuscitation using a cascade of CNNEDs. Nejad MPS; Kargin V; Hajeb-M S; Hicks D; Valentine M; Chon KH Comput Biol Med; 2024 Apr; 172():108180. PubMed ID: 38452474 [TBL] [Abstract][Full Text] [Related]
5. Convolution Neural Network Algorithm for Shockable Arrhythmia Classification Within a Digitally Connected Automated External Defibrillator. Shen CP; Freed BC; Walter DP; Perry JC; Barakat AF; Elashery ARA; Shah KS; Kutty S; McGillion M; Ng FS; Khedraki R; Nayak KR; Rogers JD; Bhavnani SP J Am Heart Assoc; 2023 Apr; 12(8):e026974. PubMed ID: 36942628 [TBL] [Abstract][Full Text] [Related]
6. Automated detection of severity of hypertension ECG signals using an optimal bi-orthogonal wavelet filter bank. Rajput JS; Sharma M; Tan RS; Acharya UR Comput Biol Med; 2020 Aug; 123():103924. PubMed ID: 32768053 [TBL] [Abstract][Full Text] [Related]
7. A novel automated diagnostic system for classification of myocardial infarction ECG signals using an optimal biorthogonal filter bank. Sharma M; Tan RS; Acharya UR Comput Biol Med; 2018 Nov; 102():341-356. PubMed ID: 30049414 [TBL] [Abstract][Full Text] [Related]
8. Detection of shockable ventricular cardiac arrhythmias from ECG signals using FFREWT filter-bank and deep convolutional neural network. Panda R; Jain S; Tripathy RK; Acharya UR Comput Biol Med; 2020 Sep; 124():103939. PubMed ID: 32750507 [TBL] [Abstract][Full Text] [Related]
9. Application of an optimal class of antisymmetric wavelet filter banks for obstructive sleep apnea diagnosis using ECG signals. Sharma M; Agarwal S; Acharya UR Comput Biol Med; 2018 Sep; 100():100-113. PubMed ID: 29990643 [TBL] [Abstract][Full Text] [Related]
10. Automated Method for Discrimination of Arrhythmias Using Time, Frequency, and Nonlinear Features of Electrocardiogram Signals. Hajeb-Mohammadalipour S; Ahmadi M; Shahghadami R; Chon KH Sensors (Basel); 2018 Jun; 18(7):. PubMed ID: 29966276 [TBL] [Abstract][Full Text] [Related]
11. A review of progress and an advanced method for shock advice algorithms in automated external defibrillators. Nguyen MT; Nguyen TT; Le HC Biomed Eng Online; 2022 Apr; 21(1):22. PubMed ID: 35366906 [TBL] [Abstract][Full Text] [Related]
12. High efficient system for automatic classification of the electrocardiogram beats. Zadeh AE; Khazaee A Ann Biomed Eng; 2011 Mar; 39(3):996-1011. PubMed ID: 21140292 [TBL] [Abstract][Full Text] [Related]
13. Sensitivity and specificity of an automated external defibrillator algorithm designed for pediatric patients. Atkins DL; Scott WA; Blaufox AD; Law IH; Dick M; Geheb F; Sobh J; Brewer JE Resuscitation; 2008 Feb; 76(2):168-74. PubMed ID: 17765384 [TBL] [Abstract][Full Text] [Related]
14. Combined wavelet transformation and radial basis neural networks for classifying life-threatening cardiac arrhythmias. al-Fahoum AS; Howitt I Med Biol Eng Comput; 1999 Sep; 37(5):566-73. PubMed ID: 10723893 [TBL] [Abstract][Full Text] [Related]
15. Cardiac arrhythmia beat classification using DOST and PSO tuned SVM. Raj S; Ray KC; Shankar O Comput Methods Programs Biomed; 2016 Nov; 136():163-77. PubMed ID: 27686713 [TBL] [Abstract][Full Text] [Related]
16. Comparative assessment of shockable ECG rhythm detection algorithms in automated external defibrillators. Clifford AC Resuscitation; 1996 Oct; 32(3):217-25. PubMed ID: 8923585 [TBL] [Abstract][Full Text] [Related]
17. Medical Decision Support System for Diagnosis of Heart Arrhythmia using DWT and Random Forests Classifier. Alickovic E; Subasi A J Med Syst; 2016 Apr; 40(4):108. PubMed ID: 26922592 [TBL] [Abstract][Full Text] [Related]
18. Ensemble classifier fostered detection of arrhythmia using ECG data. Ramkumar M; Alagarsamy M; Balakumar A; Pradeep S Med Biol Eng Comput; 2023 Sep; 61(9):2453-2466. PubMed ID: 37145258 [TBL] [Abstract][Full Text] [Related]
19. Fully Convolutional Deep Neural Networks with Optimized Hyperparameters for Detection of Shockable and Non-Shockable Rhythms. Krasteva V; Ménétré S; Didon JP; Jekova I Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32438582 [TBL] [Abstract][Full Text] [Related]
20. Bench study of the accuracy of a commercial AED arrhythmia analysis algorithm in the presence of electromagnetic interferences. Jekova I; Krasteva V; Ménétré S; Stoyanov T; Christov I; Fleischhackl R; Schmid JJ; Didon JP Physiol Meas; 2009 Jul; 30(7):695-705. PubMed ID: 19525573 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]