These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2300 related articles for article (PubMed ID: 31627032)
1. Extracting comprehensive clinical information for breast cancer using deep learning methods. Zhang X; Zhang Y; Zhang Q; Ren Y; Qiu T; Ma J; Sun Q Int J Med Inform; 2019 Dec; 132():103985. PubMed ID: 31627032 [TBL] [Abstract][Full Text] [Related]
2. Extracting clinical named entity for pituitary adenomas from Chinese electronic medical records. Fang A; Hu J; Zhao W; Feng M; Fu J; Feng S; Lou P; Ren H; Chen X BMC Med Inform Decis Mak; 2022 Mar; 22(1):72. PubMed ID: 35321705 [TBL] [Abstract][Full Text] [Related]
3. Use of BERT (Bidirectional Encoder Representations from Transformers)-Based Deep Learning Method for Extracting Evidences in Chinese Radiology Reports: Development of a Computer-Aided Liver Cancer Diagnosis Framework. Liu H; Zhang Z; Xu Y; Wang N; Huang Y; Yang Z; Jiang R; Chen H J Med Internet Res; 2021 Jan; 23(1):e19689. PubMed ID: 33433395 [TBL] [Abstract][Full Text] [Related]
4. A study of deep learning approaches for medication and adverse drug event extraction from clinical text. Wei Q; Ji Z; Li Z; Du J; Wang J; Xu J; Xiang Y; Tiryaki F; Wu S; Zhang Y; Tao C; Xu H J Am Med Inform Assoc; 2020 Jan; 27(1):13-21. PubMed ID: 31135882 [TBL] [Abstract][Full Text] [Related]
5. A Fine-Tuned Bidirectional Encoder Representations From Transformers Model for Food Named-Entity Recognition: Algorithm Development and Validation. Stojanov R; Popovski G; Cenikj G; Koroušić Seljak B; Eftimov T J Med Internet Res; 2021 Aug; 23(8):e28229. PubMed ID: 34383671 [TBL] [Abstract][Full Text] [Related]
6. Deep learning approaches for extracting adverse events and indications of dietary supplements from clinical text. Fan Y; Zhou S; Li Y; Zhang R J Am Med Inform Assoc; 2021 Mar; 28(3):569-577. PubMed ID: 33150942 [TBL] [Abstract][Full Text] [Related]
7. Fine-Tuning Bidirectional Encoder Representations From Transformers (BERT)-Based Models on Large-Scale Electronic Health Record Notes: An Empirical Study. Li F; Jin Y; Liu W; Rawat BPS; Cai P; Yu H JMIR Med Inform; 2019 Sep; 7(3):e14830. PubMed ID: 31516126 [TBL] [Abstract][Full Text] [Related]
8. The Impact of Pretrained Language Models on Negation and Speculation Detection in Cross-Lingual Medical Text: Comparative Study. Rivera Zavala R; Martinez P JMIR Med Inform; 2020 Dec; 8(12):e18953. PubMed ID: 33270027 [TBL] [Abstract][Full Text] [Related]
9. Extracting Drug Names and Associated Attributes From Discharge Summaries: Text Mining Study. Alfattni G; Belousov M; Peek N; Nenadic G JMIR Med Inform; 2021 May; 9(5):e24678. PubMed ID: 33949962 [TBL] [Abstract][Full Text] [Related]
10. Korean clinical entity recognition from diagnosis text using BERT. Kim YM; Lee TH BMC Med Inform Decis Mak; 2020 Sep; 20(Suppl 7):242. PubMed ID: 32998724 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of clinical named entity recognition methods for Serbian electronic health records. Kaplar A; Stošović M; Kaplar A; Brković V; Naumović R; Kovačević A Int J Med Inform; 2022 Aug; 164():104805. PubMed ID: 35653828 [TBL] [Abstract][Full Text] [Related]
12. Chinese-Named Entity Recognition From Adverse Drug Event Records: Radical Embedding-Combined Dynamic Embedding-Based BERT in a Bidirectional Long Short-term Conditional Random Field (Bi-LSTM-CRF) Model. Wu H; Ji J; Tian H; Chen Y; Ge W; Zhang H; Yu F; Zou J; Nakamura M; Liao J JMIR Med Inform; 2021 Dec; 9(12):e26407. PubMed ID: 34855616 [TBL] [Abstract][Full Text] [Related]
13. Adversarial active learning for the identification of medical concepts and annotation inconsistency. Yu G; Yang Y; Wang X; Zhen H; He G; Li Z; Zhao Y; Shu Q; Shu L J Biomed Inform; 2020 Aug; 108():103481. PubMed ID: 32687985 [TBL] [Abstract][Full Text] [Related]
14. Transformers for extracting breast cancer information from Spanish clinical narratives. Solarte-Pabón O; Montenegro O; García-Barragán A; Torrente M; Provencio M; Menasalvas E; Robles V Artif Intell Med; 2023 Sep; 143():102625. PubMed ID: 37673566 [TBL] [Abstract][Full Text] [Related]
15. A comprehensive study of named entity recognition in Chinese clinical text. Lei J; Tang B; Lu X; Gao K; Jiang M; Xu H J Am Med Inform Assoc; 2014; 21(5):808-14. PubMed ID: 24347408 [TBL] [Abstract][Full Text] [Related]
16. Relation Classification for Bleeding Events From Electronic Health Records Using Deep Learning Systems: An Empirical Study. Mitra A; Rawat BPS; McManus DD; Yu H JMIR Med Inform; 2021 Jul; 9(7):e27527. PubMed ID: 34255697 [TBL] [Abstract][Full Text] [Related]
17. A comparative study on deep learning models for text classification of unstructured medical notes with various levels of class imbalance. Lu H; Ehwerhemuepha L; Rakovski C BMC Med Res Methodol; 2022 Jul; 22(1):181. PubMed ID: 35780100 [TBL] [Abstract][Full Text] [Related]
18. Automatic Extraction of Lung Cancer Staging Information From Computed Tomography Reports: Deep Learning Approach. Hu D; Zhang H; Li S; Wang Y; Wu N; Lu X JMIR Med Inform; 2021 Jul; 9(7):e27955. PubMed ID: 34287213 [TBL] [Abstract][Full Text] [Related]
19. Extraction of BI-RADS findings from breast ultrasound reports in Chinese using deep learning approaches. Miao S; Xu T; Wu Y; Xie H; Wang J; Jing S; Zhang Y; Zhang X; Yang Y; Zhang X; Shan T; Wang L; Xu H; Wang S; Liu Y Int J Med Inform; 2018 Nov; 119():17-21. PubMed ID: 30342682 [TBL] [Abstract][Full Text] [Related]
20. Biomedical named entity recognition using deep neural networks with contextual information. Cho H; Lee H BMC Bioinformatics; 2019 Dec; 20(1):735. PubMed ID: 31881938 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]