These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 31627069)

  • 1. A poro-hyper-viscoelastic rate-dependent constitutive modeling for the analysis of brain tissues.
    Hosseini-Farid M; Ramzanpour M; McLean J; Ziejewski M; Karami G
    J Mech Behav Biomed Mater; 2020 Feb; 102():103475. PubMed ID: 31627069
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rate-dependent constitutive modeling of brain tissue.
    Hosseini-Farid M; Ramzanpour M; McLean J; Ziejewski M; Karami G
    Biomech Model Mechanobiol; 2020 Apr; 19(2):621-632. PubMed ID: 31612343
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical study of temperature effects on the poro-viscoelastic behavior of articular cartilage.
    Behrou R; Foroughi H; Haghpanah F
    J Mech Behav Biomed Mater; 2018 Feb; 78():214-223. PubMed ID: 29174620
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Poro-viscoelastic constitutive modeling of unconfined creep of hydrogels using finite element analysis with integrated optimization method.
    Liu K; Ovaert TC
    J Mech Behav Biomed Mater; 2011 Apr; 4(3):440-50. PubMed ID: 21316632
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Large deformation finite element analysis of micropipette aspiration to determine the mechanical properties of the chondrocyte.
    Baaijens FP; Trickey WR; Laursen TA; Guilak F
    Ann Biomed Eng; 2005 Apr; 33(4):494-501. PubMed ID: 15909655
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The poro-viscoelastic properties of trabecular bone: a micro computed tomography-based finite element study.
    Sandino C; McErlain DD; Schipilow J; Boyd SK
    J Mech Behav Biomed Mater; 2015 Apr; 44():1-9. PubMed ID: 25591049
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Blood clot behaves as a poro-visco-elastic material.
    Ghezelbash F; Liu S; Shirazi-Adl A; Li J
    J Mech Behav Biomed Mater; 2022 Apr; 128():105101. PubMed ID: 35124354
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental verification of the roles of intrinsic matrix viscoelasticity and tension-compression nonlinearity in the biphasic response of cartilage.
    Huang CY; Soltz MA; Kopacz M; Mow VC; Ateshian GA
    J Biomech Eng; 2003 Feb; 125(1):84-93. PubMed ID: 12661200
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Poro-viscoelastic behavior of gelatin hydrogels under compression-implications for bioelasticity imaging.
    Kalyanam S; Yapp RD; Insana MF
    J Biomech Eng; 2009 Aug; 131(8):081005. PubMed ID: 19604017
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determining constitutive behavior of the brain tissue using digital image correlation and finite element modeling.
    Felfelian AM; Baradaran Najar A; Jafari Nedoushan R; Salehi H
    Biomech Model Mechanobiol; 2019 Dec; 18(6):1927-1945. PubMed ID: 31197510
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Constitutive model of brain tissue suitable for finite element analysis of surgical procedures.
    Miller K
    J Biomech; 1999 May; 32(5):531-7. PubMed ID: 10327007
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Biphasic Transversely Isotropic Poroviscoelastic Model for the Unconfined Compression of Hydrated Soft Tissue.
    Hatami-Marbini H; Maulik R
    J Biomech Eng; 2016 Mar; 138(3):4032059. PubMed ID: 26593630
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-integer viscoelastic constitutive law to model soft biological tissues to in-vivo indentation.
    Demirci N; Tönük E
    Acta Bioeng Biomech; 2014; 16(4):13-21. PubMed ID: 25597890
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydro-mechanical coupling in the periodontal ligament: a porohyperelastic finite element model.
    Bergomi M; Cugnoni J; Galli M; Botsis J; Belser UC; Wiskott HW
    J Biomech; 2011 Jan; 44(1):34-8. PubMed ID: 20825940
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biphasic poroviscoelastic simulation of the unconfined compression of articular cartilage: II--Effect of variable strain rates.
    DiSilvestro MR; Zhu Q; Suh JK
    J Biomech Eng; 2001 Apr; 123(2):198-200. PubMed ID: 11340882
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An optimized transversely isotropic, hyper-poro-viscoelastic finite element model of the meniscus to evaluate mechanical degradation following traumatic loading.
    Wheatley BB; Fischenich KM; Button KD; Haut RC; Haut Donahue TL
    J Biomech; 2015 Jun; 48(8):1454-60. PubMed ID: 25776872
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distinguishing poroelasticity and viscoelasticity of brain tissue with time scale.
    Su L; Wang M; Yin J; Ti F; Yang J; Ma C; Liu S; Lu TJ
    Acta Biomater; 2023 Jan; 155():423-435. PubMed ID: 36372152
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Equivalence between short-time biphasic and incompressible elastic material responses.
    Ateshian GA; Ellis BJ; Weiss JA
    J Biomech Eng; 2007 Jun; 129(3):405-12. PubMed ID: 17536908
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel two-layer, coupled finite element approach for modeling the nonlinear elastic and viscoelastic behavior of human erythrocytes.
    Klöppel T; Wall WA
    Biomech Model Mechanobiol; 2011 Jul; 10(4):445-59. PubMed ID: 20725846
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transient solid-fluid interactions in rat brain tissue under combined translational shear and fixed compression.
    Haslach HW; Leahy LN; Hsieh AH
    J Mech Behav Biomed Mater; 2015 Aug; 48():12-27. PubMed ID: 25913604
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.