These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 31627154)

  • 21. Pulsatile flow of non-Newtonian blood fluid inside stenosed arteries: Investigating the effects of viscoelastic and elastic walls, arteriosclerosis, and polycythemia diseases.
    Nejad AA; Talebi Z; Cheraghali D; Shahbani-Zahiri A; Norouzi M
    Comput Methods Programs Biomed; 2018 Feb; 154():109-122. PubMed ID: 29249336
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Coronary arteries hemodynamics: effect of arterial geometry on hemodynamic parameters causing atherosclerosis.
    Wong KKL; Wu J; Liu G; Huang W; Ghista DN
    Med Biol Eng Comput; 2020 Aug; 58(8):1831-1843. PubMed ID: 32519006
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of carotid artery geometry on the magnitude and distribution of wall shear stress gradients.
    Wells DR; Archie JP; Kleinstreuer C
    J Vasc Surg; 1996 Apr; 23(4):667-78. PubMed ID: 8627904
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Numerical investigation of the non-Newtonian blood flow in a bifurcation model with a non-planar branch.
    Chen J; Lu XY
    J Biomech; 2004 Dec; 37(12):1899-911. PubMed ID: 15519598
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Micropolar pulsatile blood flow conveying nanoparticles in a stenotic tapered artery: NON-Newtonian pharmacodynamic simulation.
    Vasu B; Dubey A; Bég OA; Gorla RSR
    Comput Biol Med; 2020 Nov; 126():104025. PubMed ID: 33074112
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [A boundary element analysis on hemodynamic characteristics at the bifurcation of abdominal arterial].
    Peng H; Yang D
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2012 Aug; 29(4):697-700. PubMed ID: 23016419
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Numerical investigation of the non-Newtonian pulsatile blood flow in a bifurcation model with a non-planar branch.
    Chen J; Lu XY
    J Biomech; 2006; 39(5):818-32. PubMed ID: 16488221
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Computer simulation of local blood flow and vessel mechanics in a compliant carotid artery bifurcation model.
    Perktold K; Rappitsch G
    J Biomech; 1995 Jul; 28(7):845-56. PubMed ID: 7657682
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influences of slip and Cu-blood nanofluid in a physiological study of cilia.
    Sadaf H; Nadeem S
    Comput Methods Programs Biomed; 2016 Jul; 131():169-80. PubMed ID: 27265057
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Calculation of arterial wall temperature in atherosclerotic arteries: effect of pulsatile flow, arterial geometry, and plaque structure.
    Ley O; Kim T
    Biomed Eng Online; 2007 Mar; 6():8. PubMed ID: 17331253
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Computational fluid dynamic simulation of two-fluid non-Newtonian nanohemodynamics through a diseased artery with a stenosis and aneurysm.
    Dubey A; Vasu B; Anwar Bég O; Gorla RSR; Kadir A
    Comput Methods Biomech Biomed Engin; 2020 Jun; 23(8):345-371. PubMed ID: 32098508
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hemodynamic analysis in an idealized artery tree: differences in wall shear stress between Newtonian and non-Newtonian blood models.
    Weddell JC; Kwack J; Imoukhuede PI; Masud A
    PLoS One; 2015; 10(4):e0124575. PubMed ID: 25897758
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Localizing role of hemodynamics in atherosclerosis in several human vertebrobasilar junction geometries.
    Ravensbergen J; Ravensbergen JW; Krijger JK; Hillen B; Hoogstraten HW
    Arterioscler Thromb Vasc Biol; 1998 May; 18(5):708-16. PubMed ID: 9598828
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Possibility of atherosclerosis in an arterial bifurcation model.
    Arjmandi-Tash O; Razavi SE; Zanbouri R
    Bioimpacts; 2011; 1(4):225-8. PubMed ID: 23678432
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Slip effects on mixed convective peristaltic transport of copper-water nanofluid in an inclined channel.
    Abbasi FM; Hayat T; Ahmad B; Chen GQ
    PLoS One; 2014; 9(8):e105440. PubMed ID: 25170908
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Flow patterns and distributions of fluid velocity and wall shear stress in the human internal carotid and middle cerebral arteries.
    Takeuchi S; Karino T
    World Neurosurg; 2010 Mar; 73(3):174-85; discussion e27. PubMed ID: 20860955
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Numerical investigation of non-Newtonian blood flow within an artery with cone shape of stenosis in various stenosis angles.
    Yan SR; Zarringhalam M; Toghraie D; Foong LK; Talebizadehsardari P
    Comput Methods Programs Biomed; 2020 Aug; 192():105434. PubMed ID: 32182442
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A numerical study on hemodynamics in the left coronary bifurcation with normal and hypertension conditions.
    Bahrami S; Norouzi M
    Biomech Model Mechanobiol; 2018 Dec; 17(6):1785-1796. PubMed ID: 30027356
    [TBL] [Abstract][Full Text] [Related]  

  • 39. What measurements are necessary for a comprehensive evaluation of the peripheral arterial circulation?
    Reneman RS
    Cardiovasc Dis; 1981 Sep; 8(3):435-454. PubMed ID: 15216202
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Coupling of shear-circumferential stress pulses investigation through stress phase angle in FSI models of stenotic artery using experimental data.
    Samaee M; Tafazzoli-Shadpour M; Alavi H
    Med Biol Eng Comput; 2017 Aug; 55(8):1147-1162. PubMed ID: 27709408
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.