These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 31627192)

  • 1. Kohn anomaly and van Hove singularity in IV
    Yan GQ; Cheng XL; Zhang H
    J Phys Condens Matter; 2020 Feb; 32(7):075401. PubMed ID: 31627192
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicted superconductivity of Ni2VAl and pressure dependence of superconductivity in Ni2NbX (X  =  Al, Ga and Sn) and Ni2VAl.
    Sreenivasa Reddy PV; Kanchana V; Vaitheeswaran G; Singh DJ
    J Phys Condens Matter; 2016 Mar; 28(11):115703. PubMed ID: 26902514
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Topological Singularity Induced Chiral Kohn Anomaly in a Weyl Semimetal.
    Nguyen T; Han F; Andrejevic N; Pablo-Pedro R; Apte A; Tsurimaki Y; Ding Z; Zhang K; Alatas A; Alp EE; Chi S; Fernandez-Baca J; Matsuda M; Tennant DA; Zhao Y; Xu Z; Lynn JW; Huang S; Li M
    Phys Rev Lett; 2020 Jun; 124(23):236401. PubMed ID: 32603171
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Charge Density Waves and Electronic Properties of Superconducting Kagome Metals.
    Tan H; Liu Y; Wang Z; Yan B
    Phys Rev Lett; 2021 Jul; 127(4):046401. PubMed ID: 34355948
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kohn anomalies in topological insulator thin films: first-principles study.
    Ghim M; Jhi SH
    J Phys Condens Matter; 2022 Apr; 34(26):. PubMed ID: 35405670
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kohn-Luttinger Superconductivity in Twisted Bilayer Graphene.
    González J; Stauber T
    Phys Rev Lett; 2019 Jan; 122(2):026801. PubMed ID: 30720323
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quasi-One-Dimensional Fermi Surface Nesting and Hidden Nesting Enable Multiple Kohn Anomalies in α-Uranium.
    Roy AP; Bajaj N; Mittal R; Babu PD; Bansal D
    Phys Rev Lett; 2021 Mar; 126(9):096401. PubMed ID: 33750153
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fermi Surface Nesting and Phonon Frequency Gap Drive Anomalous Thermal Transport.
    Li C; Ravichandran NK; Lindsay L; Broido D
    Phys Rev Lett; 2018 Oct; 121(17):175901. PubMed ID: 30411930
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kohn singularity and Kohn anomaly in conventional superconductors--role of pairing mechanism.
    Chaudhury R; Das MP
    J Phys Condens Matter; 2013 Mar; 25(12):122202. PubMed ID: 23449100
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vacancy hardening and softening in transition metal carbides and nitrides.
    Jhi SH; Louie SG; Cohen ML; Ihm J
    Phys Rev Lett; 2001 Apr; 86(15):3348-51. PubMed ID: 11327967
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Emergence of an Out-of-Plane Optical Phonon (ZO) Kohn Anomaly in Quasifreestanding Epitaxial Graphene.
    Politano A; de Juan F; Chiarello G; Fertig HA
    Phys Rev Lett; 2015 Aug; 115(7):075504. PubMed ID: 26317732
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinematics of electrons near a van hove singularity.
    Gonzalez J; Guinea F; Vozmediano MA
    Phys Rev Lett; 2000 May; 84(21):4930-3. PubMed ID: 10990834
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sr_{2}MoO_{4} and Sr_{2}RuO_{4}: Disentangling the Roles of Hund's and van Hove Physics.
    Karp J; Bramberger M; Grundner M; Schollwöck U; Millis AJ; Zingl M
    Phys Rev Lett; 2020 Oct; 125(16):166401. PubMed ID: 33124840
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface activation by electron scavenger metal nanorod adsorption on TiH
    Hinuma Y; Mine S; Toyao T; Maeno Z; Shimizu KI
    Phys Chem Chem Phys; 2021 Aug; 23(31):16577-16593. PubMed ID: 34320045
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Manifestation of Kohn anomaly in 1/f fluctuations in metallic carbon nanotubes.
    Back JH; Tsai CL; Kim S; Mohammadi S; Shim M
    Phys Rev Lett; 2009 Nov; 103(21):215501. PubMed ID: 20366051
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Superconductivity and lattice instability in compressed lithium from Fermi surface hot spots.
    Kasinathan D; Kunes J; Lazicki A; Rosner H; Yoo CS; Scalettar RT; Pickett WE
    Phys Rev Lett; 2006 Feb; 96(4):047004. PubMed ID: 16486875
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing superconductivity in MXenes through hydrogenation.
    Bekaert J; Sevik C; Milošević MV
    Nanoscale; 2022 Jul; 14(27):9918-9924. PubMed ID: 35781316
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Superconductivity in Metal-Rich Chalcogenide Ta
    Gui X; Górnicka K; Chen Q; Zhou H; Klimczuk T; Xie W
    Inorg Chem; 2020 May; 59(9):5798-5802. PubMed ID: 32309935
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extended van Hove singularity and superconducting instability in doped graphene.
    McChesney JL; Bostwick A; Ohta T; Seyller T; Horn K; González J; Rotenberg E
    Phys Rev Lett; 2010 Apr; 104(13):136803. PubMed ID: 20481902
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electron-phonon interaction and superconductivity in the high-pressure cI16 phase of lithium from first principles.
    Yue SY; Cheng L; Liao B; Hu M
    Phys Chem Chem Phys; 2018 Oct; 20(42):27125-27130. PubMed ID: 30334033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.