These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 31627196)

  • 1. Phonon propagation scale and nanoscale order in vitreous silica from Raman spectroscopy.
    Korepanov VI
    J Phys Condens Matter; 2020 Jan; 32(5):055901. PubMed ID: 31627196
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phonon confinement and size effect in Raman spectra of ZnO nanoparticles.
    Korepanov VI; Chan SY; Hsu HC; Hamaguchi HO
    Heliyon; 2019 Feb; 5(2):e01222. PubMed ID: 30828658
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phonon confinement in stressed silicon nanocluster.
    Sahoo S; Dhara S; Mahadevan S; Arora AK
    J Nanosci Nanotechnol; 2009 Sep; 9(9):5604-7. PubMed ID: 19928273
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical study of electron and acoustic phonon confinement in ultrathin-body germanium-on-insulator nanolayers.
    Poborchii V; Groenen J; Geshev PI; Hattori J; Chang WH; Ishii H; Irisawa T; Maeda T
    Nanoscale; 2021 Jun; 13(21):9686-9697. PubMed ID: 34018526
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Communication: three-dimensional model for phonon confinement in small particles: quantitative bandshape analysis of size-dependent Raman spectra of nanodiamonds.
    Korepanov VI; Witek H; Okajima H; Ōsawa E; Hamaguchi HO
    J Chem Phys; 2014 Jan; 140(4):041107. PubMed ID: 25669498
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence of localized amorphous silicon clustering from Raman depth-probing of silicon nanocrystals in fused silica.
    Barba D; Martin F; Ross GG
    Nanotechnology; 2008 Mar; 19(11):115707. PubMed ID: 21730567
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical absorption of semiconducting and metallic nanospheres with the confined electron-phonon coupling.
    Lee JD
    J Chem Phys; 2006 May; 124(19):194706. PubMed ID: 16729833
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct observation of confined acoustic phonon polarization branches in free-standing semiconductor nanowires.
    Kargar F; Debnath B; Kakko JP; Säynätjoki A; Lipsanen H; Nika DL; Lake RK; Balandin AA
    Nat Commun; 2016 Nov; 7():13400. PubMed ID: 27830698
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the issue of textured crystallization of Ba(NO
    Shchur Y; Beltramo G; Andrushchak AS; Vitusevich S; Huber P; Adamiv V; Teslyuk I; Boichuk N; Kityk AV
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Jul; 275():121157. PubMed ID: 35316625
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transition across a sharp interface: Data from Raman and Brillouin imaging spectroscopy.
    Caponi S; Fioretto D; Mattarelli M
    Data Brief; 2020 Dec; 33():106368. PubMed ID: 33088877
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low frequency Raman scattering from acoustic phonons confined in ZnO nanoparticles.
    Yadav HK; Gupta V; Sreenivas K; Singh SP; Sundarakannan B; Katiyar RS
    Phys Rev Lett; 2006 Aug; 97(8):085502. PubMed ID: 17026314
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Confined acoustic phonon in CdSC(1-x)Se(x) nanoparticles in borosilicate glass.
    Gupta SK; Jha PK; Sahoo S; Arora AK; Azhniuk YM
    J Nanosci Nanotechnol; 2009 Sep; 9(9):5541-4. PubMed ID: 19928260
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulations of the infrared, Raman, and 2D-IR photon echo spectra of water in nanoscale silica pores.
    Burris PC; Laage D; Thompson WH
    J Chem Phys; 2016 May; 144(19):194709. PubMed ID: 27208967
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probing Spatial Phonon Correlation Length in Post-Transition Metal Monochalcogenide GaS Using Tip-Enhanced Raman Spectroscopy.
    Alencar RS; Rabelo C; Miranda HLS; Vasconcelos TL; Oliveira BS; Ribeiro A; Públio BC; Ribeiro-Soares J; Filho AGS; Cançado LG; Jorio A
    Nano Lett; 2019 Oct; 19(10):7357-7364. PubMed ID: 31469281
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transition from Molecular Vibrations to Phonons in Atomically Precise Cadmium Selenide Quantum Dots.
    Beecher AN; Dziatko RA; Steigerwald ML; Owen JS; Crowther AC
    J Am Chem Soc; 2016 Dec; 138(51):16754-16763. PubMed ID: 27982584
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Raman electron spin-lattice relaxation with the Debye-type and with real phonon spectra in crystals.
    Hoffmann SK; Lijewski S
    J Magn Reson; 2013 Feb; 227():51-6. PubMed ID: 23274344
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial Heterodyne Raman Spectrometer (SHRS) for In Situ Chemical Sensing Using Sapphire and Silica Optical Fiber Raman Probes.
    Ottaway JM; Allen A; Waldron A; Paul PH; Angel SM; Carter JC
    Appl Spectrosc; 2019 Oct; 73(10):1160-1171. PubMed ID: 31397584
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Concentration of small ring structures in vitreous silica from a first-principles analysis of the Raman spectrum.
    Umari P; Gonze X; Pasquarello A
    Phys Rev Lett; 2003 Jan; 90(2):027401. PubMed ID: 12570576
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Effect of pressure on electron-phonon coupling constants of all-trans-beta-carotene].
    Sun MJ; Wang K; Xu SN; Qu GN; Li S; Sun CL; Zhou M; Li ZW
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 May; 34(5):1302-5. PubMed ID: 25095427
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temperature-dependent Raman scattering of silicon nanowires.
    Su Z; Sha J; Pan G; Liu J; Yang D; Dickinson C; Zhou W
    J Phys Chem B; 2006 Jan; 110(3):1229-34. PubMed ID: 16471668
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.