These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 31627204)

  • 1. Optical lattice vibrations in monolayer hexagonal boron nitride from macroscopic equations.
    Zhang JZ
    J Phys Condens Matter; 2020 Feb; 32(6):065304. PubMed ID: 31627204
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Continuity of phonon dispersion curves in layered ionic materials.
    Li Y; Kerr WC; Holzwarth NAW
    J Phys Condens Matter; 2020 Jan; 32(5):055402. PubMed ID: 31600738
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of strong phonon-phonon coupling on the temperature dependent structural stability and frequency shift of 2D hexagonal boron nitride.
    Anees P; Valsakumar MC; Panigrahi BK
    Phys Chem Chem Phys; 2016 Jan; 18(4):2672-81. PubMed ID: 26705543
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal transport and anharmonic phonons in strained monolayer hexagonal boron nitride.
    Li S; Chen Y
    Sci Rep; 2017 Mar; 7():43956. PubMed ID: 28262786
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phonon Polaritonics in Two-Dimensional Materials.
    Rivera N; Christensen T; Narang P
    Nano Lett; 2019 Apr; 19(4):2653-2660. PubMed ID: 30892900
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Four-dimensional vibrational spectroscopy for nanoscale mapping of phonon dispersion in BN nanotubes.
    Qi R; Li N; Du J; Shi R; Huang Y; Yang X; Liu L; Xu Z; Dai Q; Yu D; Gao P
    Nat Commun; 2021 Feb; 12(1):1179. PubMed ID: 33608559
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Breakdown of Optical Phonons' Splitting in Two-Dimensional Materials.
    Sohier T; Gibertini M; Calandra M; Mauri F; Marzari N
    Nano Lett; 2017 Jun; 17(6):3758-3763. PubMed ID: 28517939
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial.
    Dai S; Ma Q; Liu MK; Andersen T; Fei Z; Goldflam MD; Wagner M; Watanabe K; Taniguchi T; Thiemens M; Keilmann F; Janssen GC; Zhu SE; Jarillo-Herrero P; Fogler MM; Basov DN
    Nat Nanotechnol; 2015 Aug; 10(8):682-6. PubMed ID: 26098228
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced Interaction of Optical Phonons in h-BN with Plasmonic Lattice and Cavity Modes.
    Song X; Dereshgi SA; Palacios E; Xiang Y; Aydin K
    ACS Appl Mater Interfaces; 2021 Jun; 13(21):25224-25233. PubMed ID: 34008954
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phonon transport at the interfaces of vertically stacked graphene and hexagonal boron nitride heterostructures.
    Yan Z; Chen L; Yoon M; Kumar S
    Nanoscale; 2016 Feb; 8(7):4037-46. PubMed ID: 26817419
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Born effective charge removed anomalous temperature dependence of lattice thermal conductivity in monolayer GeC.
    Guo SD; Guo XS; Dong J
    J Phys Condens Matter; 2019 Mar; 31(12):125701. PubMed ID: 30630139
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ab Initio Molecular Dynamics and Lattice Dynamics-Based Force Field for Modeling Hexagonal Boron Nitride in Mechanical and Interfacial Applications.
    Govind Rajan A; Strano MS; Blankschtein D
    J Phys Chem Lett; 2018 Apr; 9(7):1584-1591. PubMed ID: 29528646
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonlinear Tunable Vibrational Response in Hexagonal Boron Nitride.
    Iyikanat F; Konečná A; García de Abajo FJ
    ACS Nano; 2021 Aug; 15(8):13415-13426. PubMed ID: 34310130
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Topologically protected interface phonons in two-dimensional nanomaterials: hexagonal boron nitride and silicon carbide.
    Jiang JW; Wang BS; Park HS
    Nanoscale; 2018 Aug; 10(29):13913-13923. PubMed ID: 29999511
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Near-Field Infrared Pump-Probe Imaging of Surface Phonon Coupling in Boron Nitride Nanotubes.
    Gilburd L; Xu XG; Bando Y; Golberg D; Walker GC
    J Phys Chem Lett; 2016 Jan; 7(2):289-94. PubMed ID: 26727539
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dipolar polarization and piezoelectricity of a hexagonal boron nitride sheet decorated with hydrogen and fluorine.
    Noor-A-Alam M; Kim HJ; Shin YH
    Phys Chem Chem Phys; 2014 Apr; 16(14):6575-82. PubMed ID: 24569610
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface and Volume Phonon Polaritons in Boron Nitride Nanotubes.
    Phillips C; Gilburd L; Xu XG; Walker GC
    J Phys Chem Lett; 2019 Sep; 10(17):4851-4856. PubMed ID: 31397161
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hybrid long-range hyperbolic phonon polariton waveguide using hexagonal boron nitride for mid-infrared subwavelength confinement.
    Yang Y; Finch MF; Xiong D; Lail BA
    Opt Express; 2018 Oct; 26(20):26272-26282. PubMed ID: 30469717
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temperature Dependence of Wavelength Selectable Zero-Phonon Emission from Single Defects in Hexagonal Boron Nitride.
    Jungwirth NR; Calderon B; Ji Y; Spencer MG; Flatté ME; Fuchs GD
    Nano Lett; 2016 Oct; 16(10):6052-6057. PubMed ID: 27580074
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phonon dispersion of silicene on ZrB2(0 0 0 1).
    Aizawa T; Suehara S; Otani S
    J Phys Condens Matter; 2015 Aug; 27(30):305002. PubMed ID: 26151501
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.