These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
10. An intellectual disability syndrome with single-nucleotide variants in O-GlcNAc transferase. Pravata VM; Omelková M; Stavridis MP; Desbiens CM; Stephen HM; Lefeber DJ; Gecz J; Gundogdu M; Õunap K; Joss S; Schwartz CE; Wells L; van Aalten DMF Eur J Hum Genet; 2020 Jun; 28(6):706-714. PubMed ID: 32080367 [TBL] [Abstract][Full Text] [Related]
11. Intellectual disability-associated disruption of O-GlcNAc cycling impairs habituation learning in Drosophila. Fenckova M; Muha V; Mariappa D; Catinozzi M; Czajewski I; Blok LER; Ferenbach AT; Storkebaum E; Schenck A; van Aalten DMF PLoS Genet; 2022 May; 18(5):e1010159. PubMed ID: 35500025 [TBL] [Abstract][Full Text] [Related]
12. Generation of an Interactome for the Tetratricopeptide Repeat Domain of O-GlcNAc Transferase Indicates a Role for the Enzyme in Intellectual Disability. Stephen HM; Praissman JL; Wells L J Proteome Res; 2021 Feb; 20(2):1229-1242. PubMed ID: 33356293 [TBL] [Abstract][Full Text] [Related]
13. Neuroectoderm phenotypes in a human stem cell model of O-GlcNAc transferase associated with intellectual disability. Murray M; Davidson L; Ferenbach AT; Lefeber D; van Aalten DMF Mol Genet Metab; 2024 Jun; 142(2):108492. PubMed ID: 38759397 [TBL] [Abstract][Full Text] [Related]
14. The O-GlcNAc cycling in neurodevelopment and associated diseases. Wenzel DM; Olivier-Van Stichelen S Biochem Soc Trans; 2022 Dec; 50(6):1693-1702. PubMed ID: 36383066 [TBL] [Abstract][Full Text] [Related]
15. The active site of O-GlcNAc transferase imposes constraints on substrate sequence. Pathak S; Alonso J; Schimpl M; Rafie K; Blair DE; Borodkin VS; Albarbarawi O; van Aalten DMF Nat Struct Mol Biol; 2015 Sep; 22(9):744-750. PubMed ID: 26237509 [TBL] [Abstract][Full Text] [Related]
16. The non-catalytic domains of O-GlcNAc cycling enzymes present new opportunities for function-specific control. Hu CW; Wang K; Jiang J Curr Opin Chem Biol; 2024 Aug; 81():102476. PubMed ID: 38861851 [TBL] [Abstract][Full Text] [Related]
17. O-GlcNAc transferase congenital disorder of glycosylation (OGT-CDG): Potential mechanistic targets revealed by evaluating the OGT interactome. Mayfield JM; Hitefield NL; Czajewski I; Vanhye L; Holden L; Morava E; van Aalten DMF; Wells L J Biol Chem; 2024 Sep; 300(9):107599. PubMed ID: 39059494 [TBL] [Abstract][Full Text] [Related]
18. Functional analysis of recombinant human and Yarrowia lipolytica O-GlcNAc transferases expressed in Saccharomyces cerevisiae. Oh HJ; Moon HY; Cheon SA; Hahn Y; Kang HA J Microbiol; 2016 Oct; 54(10):667-74. PubMed ID: 27687229 [TBL] [Abstract][Full Text] [Related]
19. Feedback Regulation of Lin CH; Liao CC; Chen MY; Chou TY Int J Mol Sci; 2021 Mar; 22(7):. PubMed ID: 33801653 [TBL] [Abstract][Full Text] [Related]
20. OGT and OGA expression in postmenopausal skeletal muscle associates with hormone replacement therapy and muscle cross-sectional area. Toivonen MH; Pöllänen E; Ahtiainen M; Suominen H; Taaffe DR; Cheng S; Takala T; Kujala UM; Tammi MI; Sipilä S; Kovanen V Exp Gerontol; 2013 Dec; 48(12):1501-4. PubMed ID: 24365779 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]