These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 31627363)

  • 1. Laser-Induced Deposition of Carbon Nanotubes in Fiber Optic Tips of MMI Devices.
    Cuando-Espitia N; Bernal-Martínez J; Torres-Cisneros M; May-Arrioja D
    Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31627363
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-transverse-mode output from a fiber laser based on multimode interference.
    Zhu X; Schülzgen A; Li H; Li L; Wang Q; Suzuki S; Temyanko VL; Moloney JV; Peyghambarian N
    Opt Lett; 2008 May; 33(9):908-10. PubMed ID: 18451935
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interrogation technique analyses of a hybrid fiber optic sensor based on SPR and MMI.
    Yi D; Chen Y; Geng Y; Teng F; Li Y; Liu F; Li X; Hong X
    Opt Express; 2020 Jul; 28(14):20764-20772. PubMed ID: 32680129
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In-situ monitoring of optical deposition of carbon nanotubes onto fiber end.
    Kashiwagi K; Yamashita S; Set SY
    Opt Express; 2009 Mar; 17(7):5711-5. PubMed ID: 19333339
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deposition of carbon nanotubes around microfiber via evanascent light.
    Kashiwagi K; Yamashita S
    Opt Express; 2009 Sep; 17(20):18364-70. PubMed ID: 19907627
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical deposition of graphene and carbon nanotubes in a fiber ferrule for passive mode-locked lasing.
    Martinez A; Fuse K; Xu B; Yamashita S
    Opt Express; 2010 Oct; 18(22):23054-61. PubMed ID: 21164646
    [TBL] [Abstract][Full Text] [Related]  

  • 7. UV exposure on a single-mode fiber within a multimode interference structure.
    Wu Q; Yuan J; Yu C; Sang X; Sun L; Li J; Guo T; Guan B; Chan H; Chiang KS; Ma Y; Wang P; Semenova Y; Farrell G
    Opt Lett; 2014 Nov; 39(22):6521-4. PubMed ID: 25490509
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detailed investigation of self-imaging in large-core multimode optical fibers for application in fiber lasers and amplifiers.
    Zhu X; Schülzgen A; Li H; Li L; Han L; Moloney JV; Peyghambarian N
    Opt Express; 2008 Oct; 16(21):16632-45. PubMed ID: 18852772
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical Sensing Using Fiber-Optic Multimode Interference Devices: A Review of Nonconventional Sensing Schemes.
    Guzmán-Sepúlveda JR; Guzmán-Cabrera R; Castillo-Guzmán AA
    Sensors (Basel); 2021 Mar; 21(5):. PubMed ID: 33800041
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hierarchical composite structures prepared by electrophoretic deposition of carbon nanotubes onto glass fibers.
    An Q; Rider AN; Thostenson ET
    ACS Appl Mater Interfaces; 2013 Mar; 5(6):2022-32. PubMed ID: 23379418
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multipoint fiber optics refractive index sensor based on multimode interference effects.
    Fuentes-Rubio YA; Domínguez-Cruz RF; Guzmán-Sepúlveda JR
    Appl Opt; 2021 Nov; 60(31):9691-9695. PubMed ID: 34807152
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Passive athermalization of multimode interference devices for wavelength-locking applications.
    Ruiz-Perez VI; May-Arrioja DA; Guzman-Sepulveda JR
    Opt Express; 2017 Mar; 25(5):4800-4809. PubMed ID: 28380749
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optically formed carbon nanotube sphere.
    Kashiwagi K; Yamashita S; Set SY
    Opt Express; 2008 Feb; 16(4):2528-32. PubMed ID: 18542333
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Removal of Ozone by Carbon Nanotubes/Quartz Fiber Film.
    Yang S; Nie J; Wei F; Yang X
    Environ Sci Technol; 2016 Sep; 50(17):9592-8. PubMed ID: 27501513
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbon nanotube-doped polymer optical fiber.
    Uchida S; Martinez A; Song YW; Ishigure T; Yamashita S
    Opt Lett; 2009 Oct; 34(20):3077-9. PubMed ID: 19838231
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and growth mechanism of carbon nanotubes growing on carbon fiber surfaces with improved tensile strength.
    Qin J; Wang C; Wang Y; Lu R; Zheng L; Wang X; Yao Z; Gao Q; Wei H
    Nanotechnology; 2018 Sep; 29(39):395602. PubMed ID: 29972379
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alignment of carbon nanotubes and reinforcing effects in nylon-6 polymer composite fibers.
    Rangari VK; Yousuf M; Jeelani S; Pulikkathara MX; Khabashesku VN
    Nanotechnology; 2008 Jun; 19(24):245703. PubMed ID: 21825828
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbon Nanotube Dispersion in Solvents and Polymer Solutions: Mechanisms, Assembly, and Preferences.
    Pramanik C; Gissinger JR; Kumar S; Heinz H
    ACS Nano; 2017 Dec; 11(12):12805-12816. PubMed ID: 29179536
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Electrochemical Behavior of Carbon Fiber Microelectrodes Modified with Carbon Nanotubes Using a Two-Step Electroless Plating/Chemical Vapor Deposition Process.
    Lu L; Liang L; Teh KS; Xie Y; Wan Z; Tang Y
    Sensors (Basel); 2017 Mar; 17(4):. PubMed ID: 28358344
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermo-optic characteristic of DNA thin solid film and its application as a biocompatible optical fiber temperature sensor.
    Hong S; Jung W; Nazari T; Song S; Kim T; Quan C; Oh K
    Opt Lett; 2017 May; 42(10):1943-1945. PubMed ID: 28504765
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.