BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

47 related articles for article (PubMed ID: 31627859)

  • 1. Agrobacterium tumefaciens-mediated genetic transformation of the phytopathogenic fungus Penicillium digitatum.
    Wang JY; Li HY
    J Zhejiang Univ Sci B; 2008 Oct; 9(10):823-8. PubMed ID: 18837111
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An efficient targeted gene deletion approach for Cochliobolus heterostrophus using Agrobacterium tumefaciens-mediated transformation.
    Sun J; Yang R; Liu Y; Zhou Z; Jia J; Huang H; Xiao S; Xue C
    J Microbiol Methods; 2024 Jan; 216():106863. PubMed ID: 38036223
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Agrobacterium tumefaciens-mediated transformation of Valsa mali: an efficient tool for random insertion mutagenesis.
    Wang C; Guan X; Wang H; Li G; Dong X; Wang G; Li B
    ScientificWorldJournal; 2013; 2013():968432. PubMed ID: 24381526
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Construction of a New
    Yan HH; Shang YT; Wang LH; Tian XQ; Tran VT; Yao LH; Zeng B; Hu ZH
    J Microbiol Biotechnol; 2024 May; 34(5):1178-1187. PubMed ID: 38563100
    [No Abstract]   [Full Text] [Related]  

  • 5. Functional characterization of a Penicillium chrysogenum mutanase gene induced upon co-cultivation with Bacillus subtilis.
    Bajaj I; Veiga T; van Dissel D; Pronk JT; Daran JM
    BMC Microbiol; 2014 May; 14():114. PubMed ID: 24884713
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resolving phenylalanine metabolism sheds light on natural synthesis of penicillin G in Penicillium chrysogenum.
    Veiga T; Solis-Escalante D; Romagnoli G; ten Pierick A; Hanemaaijer M; Deshmukh AT; Wahl A; Pronk JT; Daran JM
    Eukaryot Cell; 2012 Feb; 11(2):238-49. PubMed ID: 22158714
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic Transformation of Cryptococcus Species with Agrobacterium Transfer DNA.
    Chong NF; Idnurm A; Nugent BC
    Methods Mol Biol; 2024; 2775():81-90. PubMed ID: 38758312
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deregulation of secondary metabolism in a histone deacetylase mutant of Penicillium chrysogenum.
    Guzman-Chavez F; Salo O; Samol M; Ries M; Kuipers J; Bovenberg RAL; Vreeken RJ; Driessen AJM
    Microbiologyopen; 2018 Oct; 7(5):e00598. PubMed ID: 29575742
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Establishment of
    Liu R; Kim W; Paguirigan JA; Jeong MH; Hur JS
    J Fungi (Basel); 2021 Mar; 7(4):. PubMed ID: 33810561
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improvement of a gene targeting system for genetic manipulation in Penicillium digitatum.
    Xu Q; Zhu CY; Wang MS; Sun XP; Li HY
    J Zhejiang Univ Sci B; 2014 Feb; 15(2):116-24. PubMed ID: 24510704
    [TBL] [Abstract][Full Text] [Related]  

  • 11.
    Casado-Del Castillo V; MacCabe AP; Orejas M
    J Fungi (Basel); 2021 Nov; 7(11):. PubMed ID: 34829246
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-Wide Chromatin Immunoprecipitation Sequencing Analysis of the Penicillium chrysogenum Velvet Protein PcVelA Identifies Methyltransferase PcLlmA as a Novel Downstream Regulator of Fungal Development.
    Becker K; Ziemons S; Lentz K; Freitag M; Kück U
    mSphere; 2016; 1(4):. PubMed ID: 27570838
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A silver bullet in a golden age of functional genomics: the impact of
    Idnurm A; Bailey AM; Cairns TC; Elliott CE; Foster GD; Ianiri G; Jeon J
    Fungal Biol Biotechnol; 2017; 4():6. PubMed ID: 28955474
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular characterization of the niaD and pyrG genes from Penicillium camemberti, and their use as transformation markers.
    Navarrete K; Roa A; Vaca I; Espinosa Y; Navarro C; Chávez R
    Cell Mol Biol Lett; 2009; 14(4):692-702. PubMed ID: 19562269
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of autophagy in Penicillium chrysogenum by using starvation pads in combination with fluorescence microscopy.
    Scheckhuber CQ
    J Vis Exp; 2015 Feb; (96):. PubMed ID: 25741895
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An efficient Agrobacterium-mediated system based on the pyrG auxotrophic marker for recombinant expression in the filamentous fungus Penicillium rubens.
    Tran VT; Thai HD; Vu TX; Vu HH; Nguyen GT; Trinh MT; Tran HTT; Pham HTT; Le NTH
    Biotechnol Lett; 2023 Jun; 45(5-6):689-702. PubMed ID: 37071381
    [TBL] [Abstract][Full Text] [Related]  

  • 17.
    Fierro F; Vaca I; Castillo NI; García-Rico RO; Chávez R
    Microorganisms; 2022 Mar; 10(3):. PubMed ID: 35336148
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A newly constructed Agrobacterium-mediated transformation system revealed the influence of nitrogen sources on the function of the LaeA regulator in Penicillium chrysogenum.
    Vu TX; Vu HH; Nguyen GT; Vu HT; Mai LTD; Pham DN; Le DH; Nguyen HQ; Tran VT
    Fungal Biol; 2019 Nov; 123(11):830-842. PubMed ID: 31627859
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A highly efficient Agrobacterium tumefaciens-mediated transformation system for the postharvest pathogen Penicillium digitatum using DsRed and GFP to visualize citrus host colonization.
    Vu TX; Ngo TT; Mai LTD; Bui TT; Le DH; Bui HTV; Nguyen HQ; Ngo BX; Tran VT
    J Microbiol Methods; 2018 Jan; 144():134-144. PubMed ID: 29175534
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.