BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

483 related articles for article (PubMed ID: 31627876)

  • 1. The Rev1-Polζ translesion synthesis mutasome: Structure, interactions and inhibition.
    Rizzo AA; Korzhnev DM
    Enzymes; 2019; 45():139-181. PubMed ID: 31627876
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction between the Rev1 C-Terminal Domain and the PolD3 Subunit of Polζ Suggests a Mechanism of Polymerase Exchange upon Rev1/Polζ-Dependent Translesion Synthesis.
    Pustovalova Y; Magalhães MT; D'Souza S; Rizzo AA; Korza G; Walker GC; Korzhnev DM
    Biochemistry; 2016 Apr; 55(13):2043-53. PubMed ID: 26982350
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NMR mapping of PCNA interaction with translesion synthesis DNA polymerase Rev1 mediated by Rev1-BRCT domain.
    Pustovalova Y; Maciejewski MW; Korzhnev DM
    J Mol Biol; 2013 Sep; 425(17):3091-105. PubMed ID: 23747975
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential roles for DNA polymerases eta, zeta, and REV1 in lesion bypass of intrastrand versus interstrand DNA cross-links.
    Hicks JK; Chute CL; Paulsen MT; Ragland RL; Howlett NG; Guéranger Q; Glover TW; Canman CE
    Mol Cell Biol; 2010 Mar; 30(5):1217-30. PubMed ID: 20028736
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rev1 promotes replication through UV lesions in conjunction with DNA polymerases η, ι, and κ but not DNA polymerase ζ.
    Yoon JH; Park J; Conde J; Wakamiya M; Prakash L; Prakash S
    Genes Dev; 2015 Dec; 29(24):2588-602. PubMed ID: 26680302
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Complex formation with Rev1 enhances the proficiency of Saccharomyces cerevisiae DNA polymerase zeta for mismatch extension and for extension opposite from DNA lesions.
    Acharya N; Johnson RE; Prakash S; Prakash L
    Mol Cell Biol; 2006 Dec; 26(24):9555-63. PubMed ID: 17030609
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of Small Molecule Translesion Synthesis Inhibitors That Target the Rev1-CT/RIR Protein-Protein Interaction.
    Sail V; Rizzo AA; Chatterjee N; Dash RC; Ozen Z; Walker GC; Korzhnev DM; Hadden MK
    ACS Chem Biol; 2017 Jul; 12(7):1903-1912. PubMed ID: 28541665
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NMR structure and dynamics of the C-terminal domain from human Rev1 and its complex with Rev1 interacting region of DNA polymerase η.
    Pozhidaeva A; Pustovalova Y; D'Souza S; Bezsonova I; Walker GC; Korzhnev DM
    Biochemistry; 2012 Jul; 51(27):5506-20. PubMed ID: 22691049
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Translesion synthesis of acetylaminofluorene-dG adducts by DNA polymerase zeta is stimulated by yeast Rev1 protein.
    Guo D; Xie Z; Shen H; Zhao B; Wang Z
    Nucleic Acids Res; 2004; 32(3):1122-30. PubMed ID: 14960722
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The non-canonical protein binding site at the monomer-monomer interface of yeast proliferating cell nuclear antigen (PCNA) regulates the Rev1-PCNA interaction and Polζ/Rev1-dependent translesion DNA synthesis.
    Sharma NM; Kochenova OV; Shcherbakova PV
    J Biol Chem; 2011 Sep; 286(38):33557-66. PubMed ID: 21799021
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Implications of inhibition of Rev1 interaction with Y family DNA polymerases for cisplatin chemotherapy.
    Yoon JH; Johnson RE; Prakash L; Prakash S
    Genes Dev; 2021 Sep; 35(17-18):1256-1270. PubMed ID: 34385260
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ubiquitin-dependent regulation of translesion polymerases.
    Chun AC; Jin DY
    Biochem Soc Trans; 2010 Feb; 38(Pt 1):110-5. PubMed ID: 20074045
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Eukaryotic translesion synthesis: Choosing the right tool for the job.
    Powers KT; Washington MT
    DNA Repair (Amst); 2018 Nov; 71():127-134. PubMed ID: 30174299
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rev7 dimerization is important for assembly and function of the Rev1/Polζ translesion synthesis complex.
    Rizzo AA; Vassel FM; Chatterjee N; D'Souza S; Li Y; Hao B; Hemann MT; Walker GC; Korzhnev DM
    Proc Natl Acad Sci U S A; 2018 Aug; 115(35):E8191-E8200. PubMed ID: 30111544
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Eukaryotic TLS polymerases.
    Tomczyk P; Synowiec E; Wysokiński D; Woźniak K
    Postepy Hig Med Dosw (Online); 2016 May; 70(0):522-33. PubMed ID: 27333922
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Filling gaps in translesion DNA synthesis in human cells.
    Quinet A; Lerner LK; Martins DJ; Menck CFM
    Mutat Res Genet Toxicol Environ Mutagen; 2018 Dec; 836(Pt B):127-142. PubMed ID: 30442338
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The roles of DNA polymerase ζ and the Y family DNA polymerases in promoting or preventing genome instability.
    Sharma S; Helchowski CM; Canman CE
    Mutat Res; 2013; 743-744():97-110. PubMed ID: 23195997
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Eukaryotic translesion synthesis DNA polymerases: specificity of structure and function.
    Prakash S; Johnson RE; Prakash L
    Annu Rev Biochem; 2005; 74():317-53. PubMed ID: 15952890
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distinct requirements for budding yeast Rev1 and Polη in translesion DNA synthesis across different types of DNA damage.
    Wang Z; Xiao W
    Curr Genet; 2020 Oct; 66(5):1019-1028. PubMed ID: 32623695
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temporally distinct translesion synthesis pathways for ultraviolet light-induced photoproducts in the mammalian genome.
    Temviriyanukul P; van Hees-Stuivenberg S; Delbos F; Jacobs H; de Wind N; Jansen JG
    DNA Repair (Amst); 2012 Jun; 11(6):550-8. PubMed ID: 22521143
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.