BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 31627896)

  • 1. Met872 is the key residue determining the novel binominal binding of metabotropic glutamate receptor 7 to calmodulin.
    Isozumi N; Ohki S
    Biochem Biophys Res Commun; 2019 Dec; 520(3):640-644. PubMed ID: 31627896
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conformation of the calmodulin-binding domain of metabotropic glutamate receptor subtype 7 and its interaction with calmodulin.
    Isozumi N; Iida Y; Nakatomi A; Nemoto N; Yazawa M; Ohki S
    J Biochem; 2011 Apr; 149(4):463-74. PubMed ID: 21258069
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A relationship between protein kinase C phosphorylation and calmodulin binding to the metabotropic glutamate receptor subtype 7.
    Nakajima Y; Yamamoto T; Nakayama T; Nakanishi S
    J Biol Chem; 1999 Sep; 274(39):27573-7. PubMed ID: 10488094
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dissociation of protein kinase-mediated regulation of metabotropic glutamate receptor 7 (mGluR7) interactions with calmodulin and regulation of mGluR7 function.
    Sorensen SD; Macek TA; Cai Z; Saugstad JA; Conn PJ
    Mol Pharmacol; 2002 Jun; 61(6):1303-12. PubMed ID: 12021391
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural determinants of calmodulin binding to the intracellular C-terminal domain of the metabotropic glutamate receptor 7A.
    Scheschonka A; Findlow S; Schemm R; El Far O; Caldwell JH; Crump MP; Holden-Dye K; O'Connor V; Betz H; Werner JM
    J Biol Chem; 2008 Feb; 283(9):5577-88. PubMed ID: 18089570
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unique structural changes in calcium-bound calmodulin upon interaction with protein 4.1R FERM domain: novel insights into the calcium-dependent regulation of 4.1R FERM domain binding to membrane proteins by calmodulin.
    Nunomura W; Isozumi N; Nakamura S; Jinbo Y; Ohki S; Kidokoro S; Wakui H; Takakuwa Y
    Cell Biochem Biophys; 2014 May; 69(1):7-19. PubMed ID: 24081810
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression and purification of metabotropic glutamate receptor 7 peptides.
    Isozumi N; Ohki S
    Protein Expr Purif; 2010 Sep; 73(1):46-50. PubMed ID: 20363328
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calcium binding and conformational properties of calmodulin complexed with peptides derived from myristoylated alanine-rich C kinase substrate (MARCKS) and MARCKS-related protein (MRP).
    Porumb T; Crivici A; Blackshear PJ; Ikura M
    Eur Biophys J; 1997; 25(4):239-47. PubMed ID: 9112755
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calcium-calmodulin-induced dimerization of the carboxyl-terminal domain from petunia glutamate decarboxylase. A novel calmodulin-peptide interaction motif.
    Yuan T; Vogel HJ
    J Biol Chem; 1998 Nov; 273(46):30328-35. PubMed ID: 9804795
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NMR studies of caldesmon-calmodulin interactions.
    Zhou N; Yuan T; Mak AS; Vogel HJ
    Biochemistry; 1997 Mar; 36(10):2817-25. PubMed ID: 9062109
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mapping of calmodulin and Gbetagamma binding domains within the C-terminal region of the metabotropic glutamate receptor 7A.
    El Far O; Bofill-Cardona E; Airas JM; O'Connor V; Boehm S; Freissmuth M; Nanoff C; Betz H
    J Biol Chem; 2001 Aug; 276(33):30662-9. PubMed ID: 11395497
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonessential role for methionines in the productive association between calmodulin and the plasma membrane Ca-ATPase.
    Yin D; Sun H; Weaver RF; Squier TC
    Biochemistry; 1999 Oct; 38(41):13654-60. PubMed ID: 10521272
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteolytic footprinting titrations for estimating ligand-binding constants and detecting pathways of conformational switching of calmodulin.
    Shea MA; Sorensen BR; Pedigo S; Verhoeven AS
    Methods Enzymol; 2000; 323():254-301. PubMed ID: 10944756
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FRET conformational analysis of calmodulin binding to nitric oxide synthase peptides and enzymes.
    Spratt DE; Taiakina V; Palmer M; Guillemette JG
    Biochemistry; 2008 Nov; 47(46):12006-17. PubMed ID: 18947187
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calcium-induced refolding of the calmodulin V136G mutant studied by NMR spectroscopy: evidence for interaction between the two globular domains.
    Fefeu S; Biekofsky RR; McCormick JE; Martin SR; Bayley PM; Feeney J
    Biochemistry; 2000 Dec; 39(51):15920-31. PubMed ID: 11123919
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PKC phosphorylation of a conserved serine residue in the C-terminus of group III metabotropic glutamate receptors inhibits calmodulin binding.
    Airas JM; Betz H; El Far O
    FEBS Lett; 2001 Apr; 494(1-2):60-3. PubMed ID: 11297735
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ca2+-sensitive inactivation and facilitation of L-type Ca2+ channels both depend on specific amino acid residues in a consensus calmodulin-binding motif in the(alpha)1C subunit.
    Zühlke RD; Pitt GS; Tsien RW; Reuter H
    J Biol Chem; 2000 Jul; 275(28):21121-9. PubMed ID: 10779517
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Competitive interaction of seven in absentia homolog-1A and Ca2+/calmodulin with the cytoplasmic tail of group 1 metabotropic glutamate receptors.
    Ishikawa K; Nash SR; Nishimune A; Neki A; Kaneko S; Nakanishi S
    Genes Cells; 1999 Jul; 4(7):381-90. PubMed ID: 10469171
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The high-affinity calcium[bond]calmodulin-binding site does not play a role in the modulation of type 1 inositol 1,4,5-trisphosphate receptor function by calcium and calmodulin.
    Nosyreva E; Miyakawa T; Wang Z; Glouchankova L; Mizushima A; Iino M; Bezprozvanny I
    Biochem J; 2002 Aug; 365(Pt 3):659-67. PubMed ID: 11972451
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MacMARCKS interacts with the metabotropic glutamate receptor type 7 and modulates G protein-mediated constitutive inhibition of calcium channels.
    Bertaso F; Lill Y; Airas JM; Espeut J; Blahos J; Bockaert J; Fagni L; Betz H; El-Far O
    J Neurochem; 2006 Oct; 99(1):288-98. PubMed ID: 16987251
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.