BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 31628056)

  • 1. Overview of biochar production from preservative-treated wood with detailed analysis of biochar characteristics, heavy metals behaviors, and their ecotoxicity.
    Kim JY; Oh S; Park YK
    J Hazard Mater; 2020 Feb; 384():121356. PubMed ID: 31628056
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metal contaminated biochar and wood ash negatively affect plant growth and soil quality after land application.
    Jones DL; Quilliam RS
    J Hazard Mater; 2014 Jul; 276():362-70. PubMed ID: 24915641
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A review on control factors of pyrolysis technology for plants containing heavy metals.
    Liu Z; Wang LA; Xiao H; Guo X; Urbanovich O; Nagorskaya L; Li X
    Ecotoxicol Environ Saf; 2020 Mar; 191():110181. PubMed ID: 31951901
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metals content of recycled construction and demolition wood before and after implementation of best management practices.
    Robey NM; Solo-Gabriele HM; Jones AS; Marini J; Townsend TG
    Environ Pollut; 2018 Nov; 242(Pt B):1198-1205. PubMed ID: 30118908
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cumulative effects of bamboo sawdust addition on pyrolysis of sewage sludge: Biochar properties and environmental risk from metals.
    Jin J; Wang M; Cao Y; Wu S; Liang P; Li Y; Zhang J; Zhang J; Wong MH; Shan S; Christie P
    Bioresour Technol; 2017 Mar; 228():218-226. PubMed ID: 28064134
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel clean production approach to utilize crop waste residues as co-diet for mealworm (Tenebrio molitor) biomass production with biochar as byproduct for heavy metal removal.
    Yang SS; Chen YD; Zhang Y; Zhou HM; Ji XY; He L; Xing DF; Ren NQ; Ho SH; Wu WM
    Environ Pollut; 2019 Sep; 252(Pt B):1142-1153. PubMed ID: 31252112
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arsenic, copper, and chromium from treated wood products in the U.S. disposal sector.
    Jones AS; Marini J; Solo-Gabriele HM; Robey NM; Townsend TG
    Waste Manag; 2019 Mar; 87():731-740. PubMed ID: 31109576
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Leaching of heavy metals from chromated copper arsenate (CCA) treated wood after disposal.
    Moghaddam AH; Mulligan CN
    Waste Manag; 2008; 28(3):628-37. PubMed ID: 17499985
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advances in production and application of biochar from lignocellulosic feedstocks for remediation of environmental pollutants.
    Yaashikaa PR; Senthil Kumar P; Varjani SJ; Saravanan A
    Bioresour Technol; 2019 Nov; 292():122030. PubMed ID: 31455552
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physical and chemical characterization of waste wood derived biochars.
    Yargicoglu EN; Sadasivam BY; Reddy KR; Spokas K
    Waste Manag; 2015 Feb; 36():256-68. PubMed ID: 25464942
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioleaching of heavy metal from woody biochar using Acidithiobacillus ferrooxidans and activation for adsorption.
    Wang B; Li C; Liang H
    Bioresour Technol; 2013 Oct; 146():803-806. PubMed ID: 23978608
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Towards Understanding the Mechanism of Heavy Metals Immobilization in Biochar Derived from Co-pyrolysis of Sawdust and Sewage Sludge.
    Yang YQ; Cui MH; Ren YG; Guo JC; Zheng ZY; Liu H
    Bull Environ Contam Toxicol; 2020 Apr; 104(4):489-496. PubMed ID: 32047949
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of pyrolysis temperature on biochar property and function as a heavy metal sorbent in soil.
    Uchimiya M; Wartelle LH; Klasson KT; Fortier CA; Lima IM
    J Agric Food Chem; 2011 Mar; 59(6):2501-10. PubMed ID: 21348519
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contamination of heavy metals and metalloids in biomass and waste fuels: Comparative characterisation and trend estimation.
    Yan J; Karlsson A; Zou Z; Dai D; Edlund U
    Sci Total Environ; 2020 Jan; 700():134382. PubMed ID: 31698270
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Decrease in the genotoxicity of metal-contaminated soils with biochar amendments.
    Rees F; Dhyèvre A; Morel JL; Cotelle S
    Environ Sci Pollut Res Int; 2017 Dec; 24(36):27634-27641. PubMed ID: 28078519
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of solid and vapor products from thermochemical conversion of municipal solid waste woody fractions.
    Ayiania M; Terrell E; Dunsmoor A; Carbajal-Gamarra FM; Garcia-Perez M
    Waste Manag; 2019 Feb; 84():277-285. PubMed ID: 30691902
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalytic pyrolysis of tire waste: Impacts of biochar catalyst on product evolution.
    Chao L; Zhang C; Zhang L; Gholizadeh M; Hu X
    Waste Manag; 2020 Oct; 116():9-21. PubMed ID: 32781409
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of biochar from sewage sludge to plant cultivation: Influence of pyrolysis temperature and biochar-to-soil ratio on yield and heavy metal accumulation.
    Song XD; Xue XY; Chen DZ; He PJ; Dai XH
    Chemosphere; 2014 Aug; 109():213-20. PubMed ID: 24582602
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Release of soluble elements from biochars derived from various biomass feedstocks.
    Wu H; Che X; Ding Z; Hu X; Creamer AE; Chen H; Gao B
    Environ Sci Pollut Res Int; 2016 Jan; 23(2):1905-15. PubMed ID: 26408115
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Technical feasibility and carbon footprint of biochar co-production with tomato plant residue.
    Llorach-Massana P; Lopez-Capel E; Peña J; Rieradevall J; Montero JI; Puy N
    Waste Manag; 2017 Sep; 67():121-130. PubMed ID: 28545892
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.