BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 31628176)

  • 1. Glutamatergic Neurons in the Piriform Cortex Influence the Activity of D1- and D2-Type Receptor-Expressing Olfactory Tubercle Neurons.
    White KA; Zhang YF; Zhang Z; Bhattarai JP; Moberly AH; In 't Zandt EE; Pena-Bravo JI; Mi H; Jia X; Fuccillo MV; Xu F; Ma M; Wesson DW
    J Neurosci; 2019 Nov; 39(48):9546-9559. PubMed ID: 31628176
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distinct representation of cue-outcome association by D1 and D2 neurons in the ventral striatum's olfactory tubercle.
    Martiros N; Kapoor V; Kim SE; Murthy VN
    Elife; 2022 Jun; 11():. PubMed ID: 35708179
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mapping of Learned Odor-Induced Motivated Behaviors in the Mouse Olfactory Tubercle.
    Murata K; Kanno M; Ieki N; Mori K; Yamaguchi M
    J Neurosci; 2015 Jul; 35(29):10581-99. PubMed ID: 26203152
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Whole-Brain Mapping of the Inputs and Outputs of the Medial Part of the Olfactory Tubercle.
    Zhang Z; Zhang H; Wen P; Zhu X; Wang L; Liu Q; Wang J; He X; Wang H; Xu F
    Front Neural Circuits; 2017; 11():52. PubMed ID: 28804450
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Neural System that Represents the Association of Odors with Rewarded Outcomes and Promotes Behavioral Engagement.
    Gadziola MA; Stetzik LA; Wright KN; Milton AJ; Arakawa K; Del Mar Cortijo M; Wesson DW
    Cell Rep; 2020 Jul; 32(3):107919. PubMed ID: 32697986
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synaptic Organization of Anterior Olfactory Nucleus Inputs to Piriform Cortex.
    Russo MJ; Franks KM; Oghaz R; Axel R; Siegelbaum SA
    J Neurosci; 2020 Dec; 40(49):9414-9425. PubMed ID: 33115926
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The olfactory tubercle encodes odor valence in behaving mice.
    Gadziola MA; Tylicki KA; Christian DL; Wesson DW
    J Neurosci; 2015 Mar; 35(11):4515-27. PubMed ID: 25788670
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adenosine A
    Sun X; Li L; Zhang HY; He W; Wang DR; Huang ZL; Wang YQ
    Brain Res; 2021 Oct; 1768():147590. PubMed ID: 34310936
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cellular Profiles of Prodynorphin and Preproenkephalin mRNA-Expressing Neurons in the Anterior Olfactory Tubercle of Mice.
    Maegawa A; Murata K; Kuroda K; Fujieda S; Fukazawa Y
    Front Neural Circuits; 2022; 16():908964. PubMed ID: 35937204
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spontaneous activity in the piriform cortex extends the dynamic range of cortical odor coding.
    Tantirigama ML; Huang HH; Bekkers JM
    Proc Natl Acad Sci U S A; 2017 Feb; 114(9):2407-2412. PubMed ID: 28196887
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid Learning of Odor-Value Association in the Olfactory Striatum.
    Millman DJ; Murthy VN
    J Neurosci; 2020 May; 40(22):4335-4347. PubMed ID: 32321744
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phasic Dopamine Modifies Sensory-Driven Output of Striatal Neurons through Synaptic Plasticity.
    Wieland S; Schindler S; Huber C; Köhr G; Oswald MJ; Kelsch W
    J Neurosci; 2015 Jul; 35(27):9946-56. PubMed ID: 26156995
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interhemispheric asymmetry of c-Fos expression in glomeruli and the olfactory tubercle following repeated odor stimulation.
    Jae Y; Lee N; Moon DW; Koo J
    FEBS Open Bio; 2020 May; 10(5):912-926. PubMed ID: 32237058
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Odor- and state-dependent olfactory tubercle local field potential dynamics in awake rats.
    Carlson KS; Dillione MR; Wesson DW
    J Neurophysiol; 2014 May; 111(10):2109-23. PubMed ID: 24598519
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activation of Dopamine Signals in the Olfactory Tubercle Facilitates Emergence from Isoflurane Anesthesia in Mice.
    Yang B; Ao Y; Liu Y; Zhang X; Li Y; Tang F; Xu H
    Neurochem Res; 2021 Jun; 46(6):1487-1501. PubMed ID: 33710536
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Neural Representation of Goal-Directed Actions and Outcomes in the Ventral Striatum's Olfactory Tubercle.
    Gadziola MA; Wesson DW
    J Neurosci; 2016 Jan; 36(2):548-60. PubMed ID: 26758844
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GABAB Receptors Tune Cortical Feedback to the Olfactory Bulb.
    Mazo C; Lepousez G; Nissant A; Valley MT; Lledo PM
    J Neurosci; 2016 Aug; 36(32):8289-304. PubMed ID: 27511004
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Centrifugal Innervation of the Olfactory Bulb: A Reappraisal.
    In 't Zandt EE; Cansler HL; Denson HB; Wesson DW
    eNeuro; 2019; 6(1):. PubMed ID: 30740517
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heterogeneous extracellular dopamine regulation in the subregions of the olfactory tubercle.
    Park J; Wakabayashi KT; Szalkowski C; Bhimani RV
    J Neurochem; 2017 Aug; 142(3):365-377. PubMed ID: 28498499
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activation of adenosine A
    Li R; Wang YQ; Liu WY; Zhang MQ; Li L; Cherasse Y; Schiffmann SN; de Kerchove d'Exaerde A; Lazarus M; Qu WM; Huang ZL
    Neuropharmacology; 2020 May; 168():107923. PubMed ID: 31874169
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.