These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 31628180)

  • 1. Multivariate Analysis of Electrophysiological Signals Reveals the Temporal Properties of Visuomotor Computations for Precision Grips.
    Guo LL; Nestor A; Nemrodov D; Frost A; Niemeier M
    J Neurosci; 2019 Nov; 39(48):9585-9597. PubMed ID: 31628180
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Disentangling Representations of Object and Grasp Properties in the Human Brain.
    Fabbri S; Stubbs KM; Cusack R; Culham JC
    J Neurosci; 2016 Jul; 36(29):7648-62. PubMed ID: 27445143
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multivariate Analysis of Electrophysiological Signals Reveals the Time Course of Precision Grasps Programs: Evidence for Nonhierarchical Evolution of Grasp Control.
    Guo LL; Oghli YS; Frost A; Niemeier M
    J Neurosci; 2021 Nov; 41(44):9210-9222. PubMed ID: 34551938
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computation on Demand: Action-Specific Representations of Visual Task Features Arise during Distinct Movement Phases.
    Lee N; Guo LL; Nestor A; Niemeier M
    J Neurosci; 2024 Jul; 44(29):. PubMed ID: 38789263
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human EEG reveals distinct neural correlates of power and precision grasping types.
    Iturrate I; Chavarriaga R; Pereira M; Zhang H; Corbet T; Leeb R; Millán JDR
    Neuroimage; 2018 Nov; 181():635-644. PubMed ID: 30056196
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phase-Dependent Visual and Sensorimotor Integration of Features for Grasp Computations before and after Effector Specification.
    Guo LL; Niemeier M
    J Neurosci; 2024 Aug; 44(33):. PubMed ID: 39019614
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of delay on the kinematics of grasping.
    Hu Y; Eagleson R; Goodale MA
    Exp Brain Res; 1999 May; 126(1):109-16. PubMed ID: 10333011
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distinct Neural Components of Visually Guided Grasping during Planning and Execution.
    Klein LK; Maiello G; Stubbs K; Proklova D; Chen J; Paulun VC; Culham JC; Fleming RW
    J Neurosci; 2023 Dec; 43(49):8504-8514. PubMed ID: 37848285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Decoding the activity of grasping neurons recorded from the ventral premotor area F5 of the macaque monkey.
    Carpaneto J; Umiltà MA; Fogassi L; Murata A; Gallese V; Micera S; Raos V
    Neuroscience; 2011 Aug; 188():80-94. PubMed ID: 21575688
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatiotemporal Distribution of Location and Object Effects in Primary Motor Cortex Neurons during Reach-to-Grasp.
    Rouse AG; Schieber MH
    J Neurosci; 2016 Oct; 36(41):10640-10653. PubMed ID: 27733614
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Infants' visual anticipation of object structure in grasp planning.
    Barrett TM; Traupman E; Needham A
    Infant Behav Dev; 2008 Jan; 31(1):1-9. PubMed ID: 17624439
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The contribution of cognitive, kinematic, and dynamic factors to anticipatory grasp selection.
    Herbort O; Butz MV; Kunde W
    Exp Brain Res; 2014 Jun; 232(6):1677-88. PubMed ID: 24534913
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cortical mechanism for the visual guidance of hand grasping movements in the monkey: A reversible inactivation study.
    Fogassi L; Gallese V; Buccino G; Craighero L; Fadiga L; Rizzolatti G
    Brain; 2001 Mar; 124(Pt 3):571-86. PubMed ID: 11222457
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gaze strategies during visually-guided versus memory-guided grasping.
    Prime SL; Marotta JJ
    Exp Brain Res; 2013 Mar; 225(2):291-305. PubMed ID: 23239197
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human neuroimaging reveals the subcomponents of grasping, reaching and pointing actions.
    Cavina-Pratesi C; Connolly JD; Monaco S; Figley TD; Milner AD; Schenk T; Culham JC
    Cortex; 2018 Jan; 98():128-148. PubMed ID: 28668221
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Change detection for real-world objects in perihand space.
    Agauas SJ; Thomas LE
    Atten Percept Psychophys; 2019 Oct; 81(7):2365-2383. PubMed ID: 31407273
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mapping the spatio-temporal structure of motor cortical LFP and spiking activities during reach-to-grasp movements.
    Riehle A; Wirtssohn S; Grün S; Brochier T
    Front Neural Circuits; 2013; 7():48. PubMed ID: 23543888
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new view on grasping.
    Smeets JB; Brenner E
    Motor Control; 1999 Jul; 3(3):237-71. PubMed ID: 10409797
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Touch the table before the target: contact with an underlying surface may assist the development of precise visually controlled reach and grasp movements in human infants.
    Karl JM; Wilson AM; Bertoli ME; Shubear NS
    Exp Brain Res; 2018 Aug; 236(8):2185-2207. PubMed ID: 29797280
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Planning grasps for object manipulation: integrating internal preferences and external constraints.
    Herbort O; Butz MV
    Cogn Process; 2015 Sep; 16 Suppl 1():249-53. PubMed ID: 26224266
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.