BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 31628372)

  • 1. Sustainable production of bio-crude oil via hydrothermal liquefaction of symbiotically grown biomass of microalgae-bacteria coupled with effective wastewater treatment.
    Goswami G; Makut BB; Das D
    Sci Rep; 2019 Oct; 9(1):15016. PubMed ID: 31628372
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrothermal liquefaction of mixed-culture algal biomass from wastewater treatment system into bio-crude oil.
    Chen WT; Zhang Y; Zhang J; Yu G; Schideman LC; Zhang P; Minarick M
    Bioresour Technol; 2014; 152():130-9. PubMed ID: 24287452
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bio-crude oil from hydrothermal liquefaction of wastewater microalgae in a pilot-scale continuous flow reactor.
    Cheng F; Jarvis JM; Yu J; Jena U; Nirmalakhandan N; Schaub TM; Brewer CE
    Bioresour Technol; 2019 Dec; 294():122184. PubMed ID: 31683452
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wastewater treatment high rate algal pond biomass for bio-crude oil production.
    Mehrabadi A; Craggs R; Farid MM
    Bioresour Technol; 2017 Jan; 224():255-264. PubMed ID: 27816350
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrothermal liquefaction of Nostoc ellipsosporum biomass grown in municipal wastewater under optimized conditions for bio-oil production.
    Devi TE; Parthiban R
    Bioresour Technol; 2020 Nov; 316():123943. PubMed ID: 32750639
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enrichment of bio-oil after hydrothermal liquefaction (HTL) of microalgae C. vulgaris grown in wastewater: Bio-char and post HTL wastewater utilization studies.
    Arun J; Varshini P; Prithvinath PK; Priyadarshini V; Gopinath KP
    Bioresour Technol; 2018 Aug; 261():182-187. PubMed ID: 29660659
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Studies on influence of process parameters on hydrothermal catalytic liquefaction of microalgae (Chlorella vulgaris) biomass grown in wastewater.
    Arun J; Shreekanth SJ; Sahana R; Raghavi MS; Gopinath KP; Gnanaprakash D
    Bioresour Technol; 2017 Nov; 244(Pt 1):963-968. PubMed ID: 28847087
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of algae (Scenedesmus obliquus) biomass pre-treatment on bio-oil production in hydrothermal liquefaction (HTL): Biochar and aqueous phase utilization studies.
    Mahima J; Sundaresh RK; Gopinath KP; Rajan PSS; Arun J; Kim SH; Pugazhendhi A
    Sci Total Environ; 2021 Jul; 778():146262. PubMed ID: 33714809
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of microalgae and bacteria inoculation on the startup of bioreactors for paper pulp wastewater and biofuel production.
    Satiro J; Gomes A; Florencio L; Simões R; Albuquerque A
    J Environ Manage; 2024 Jun; 362():121305. PubMed ID: 38830287
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A biorefinery for valorization of industrial waste-water and flue gas by microalgae for waste mitigation, carbon-dioxide sequestration and algal biomass production.
    Yadav G; Dash SK; Sen R
    Sci Total Environ; 2019 Oct; 688():129-135. PubMed ID: 31229810
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aviation fuel based on wastewater-grown microalgae: Challenges and opportunities of hydrothermal liquefaction and hydrotreatment.
    Marangon BB; Castro JS; Calijuri ML
    J Environ Manage; 2024 Mar; 354():120418. PubMed ID: 38382440
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of the microalgae-bacteria microbiome on wastewater treatment and biomass production.
    Paddock MB; Fernández-Bayo JD; VanderGheynst JS
    Appl Microbiol Biotechnol; 2020 Jan; 104(2):893-905. PubMed ID: 31828407
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Roles of Co-solvents in hydrothermal liquefaction of low-lipid, high-protein algae.
    Cui Z; Cheng F; Jarvis JM; Brewer CE; Jena U
    Bioresour Technol; 2020 Aug; 310():123454. PubMed ID: 32388353
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cultivation, characterization, and properties of Chlorella vulgaris microalgae with different lipid contents and effect on fast pyrolysis oil composition.
    Adamakis ID; Lazaridis PA; Terzopoulou E; Torofias S; Valari M; Kalaitzi P; Rousonikolos V; Gkoutzikostas D; Zouboulis A; Zalidis G; Triantafyllidis KS
    Environ Sci Pollut Res Int; 2018 Aug; 25(23):23018-23032. PubMed ID: 29859001
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biodiesel production from lipids in wet microalgae with microwave irradiation and bio-crude production from algal residue through hydrothermal liquefaction.
    Cheng J; Huang R; Yu T; Li T; Zhou J; Cen K
    Bioresour Technol; 2014 Jan; 151():415-8. PubMed ID: 24183493
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Co-liquefaction of microalgae and lignocellulosic biomass in subcritical water.
    Gai C; Li Y; Peng N; Fan A; Liu Z
    Bioresour Technol; 2015 Jun; 185():240-5. PubMed ID: 25770472
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cultivation of Chlorella vulgaris in a pilot-scale photobioreactor using real centrate wastewater with waste glycerol for improving microalgae biomass production and wastewater nutrients removal.
    Ren H; Tuo J; Addy MM; Zhang R; Lu Q; Anderson E; Chen P; Ruan R
    Bioresour Technol; 2017 Dec; 245(Pt A):1130-1138. PubMed ID: 28962086
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catalytic hydrothermal upgrading of crude bio-oils produced from different thermo-chemical conversion routes of microalgae.
    Duan P; Wang B; Xu Y
    Bioresour Technol; 2015 Jun; 186():58-66. PubMed ID: 25802049
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Perspectives on the feasibility of using microalgae for industrial wastewater treatment.
    Wang Y; Ho SH; Cheng CL; Guo WQ; Nagarajan D; Ren NQ; Lee DJ; Chang JS
    Bioresour Technol; 2016 Dec; 222():485-497. PubMed ID: 27765375
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrothermal liquefaction of Galdieria sulphuraria grown on municipal wastewater.
    Cheng F; Mallick K; Henkanatte Gedara SM; Jarvis JM; Schaub T; Jena U; Nirmalakhandan N; Brewer CE
    Bioresour Technol; 2019 Nov; 292():121884. PubMed ID: 31400652
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.