These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
362 related articles for article (PubMed ID: 31629037)
21. Novel Budesonide Particles for Dry Powder Inhalation Prepared Using a Microfluidic Reactor Coupled With Ultrasonic Spray Freeze Drying. Saboti D; Maver U; Chan HK; Planinšek O J Pharm Sci; 2017 Jul; 106(7):1881-1888. PubMed ID: 28285981 [TBL] [Abstract][Full Text] [Related]
22. Dry-powder formulations of non-covalent protein complexes with linear or miktoarm copolymers for pulmonary delivery. Nieto-Orellana A; Coghlan D; Rothery M; Falcone FH; Bosquillon C; Childerhouse N; Mantovani G; Stolnik S Int J Pharm; 2018 Apr; 540(1-2):78-88. PubMed ID: 29425761 [TBL] [Abstract][Full Text] [Related]
23. Inhaled powder formulation of naked siRNA using spray drying technology with l-leucine as dispersion enhancer. Chow MYT; Qiu Y; Lo FFK; Lin HHS; Chan HK; Kwok PCL; Lam JKW Int J Pharm; 2017 Sep; 530(1-2):40-52. PubMed ID: 28720537 [TBL] [Abstract][Full Text] [Related]
24. Effect of Particle Formation Process on Characteristics and Aerosol Performance of Respirable Protein Powders. Brunaugh AD; Wu T; Kanapuram SR; Smyth HDC Mol Pharm; 2019 Oct; 16(10):4165-4180. PubMed ID: 31448924 [TBL] [Abstract][Full Text] [Related]
25. TPP-dendrimer nanocarriers for siRNA delivery to the pulmonary epithelium and their dry powder and metered-dose inhaler formulations. Bielski E; Zhong Q; Mirza H; Brown M; Molla A; Carvajal T; da Rocha SRP Int J Pharm; 2017 Jul; 527(1-2):171-183. PubMed ID: 28549971 [TBL] [Abstract][Full Text] [Related]
26. Production of Inhalation Phage Powders Using Spray Freeze Drying and Spray Drying Techniques for Treatment of Respiratory Infections. Leung SS; Parumasivam T; Gao FG; Carrigy NB; Vehring R; Finlay WH; Morales S; Britton WJ; Kutter E; Chan HK Pharm Res; 2016 Jun; 33(6):1486-96. PubMed ID: 26928668 [TBL] [Abstract][Full Text] [Related]
27. Systemic delivery of parathyroid hormone (1-34) using spray freeze-dried inhalable particles. Poursina N; Vatanara A; Rouini MR; Gilani K; Rouholamini Najafabadi A Pharm Dev Technol; 2017 Sep; 22(6):733-739. PubMed ID: 26708720 [TBL] [Abstract][Full Text] [Related]
28. [Development of Inhalable Dry Powder Formulations Loaded with Nanoparticles Maintaining Their Original Physical Properties and Functions]. Okuda T Yakugaku Zasshi; 2017; 137(11):1339-1348. PubMed ID: 29093369 [TBL] [Abstract][Full Text] [Related]
29. High siRNA loading powder for inhalation prepared by co-spray drying with human serum albumin. Chow MYT; Qiu Y; Liao Q; Kwok PCL; Chow SF; Chan HK; Lam JKW Int J Pharm; 2019 Dec; 572():118818. PubMed ID: 31678379 [TBL] [Abstract][Full Text] [Related]
30. Dry powder aerosols of polyethylenimine (PEI)-based gene vectors mediate efficient gene delivery to the lung. Pfeifer C; Hasenpusch G; Uezguen S; Aneja MK; Reinhardt D; Kirch J; Schneider M; Claus S; Friess W; Rudolph C J Control Release; 2011 Aug; 154(1):69-76. PubMed ID: 21600251 [TBL] [Abstract][Full Text] [Related]
31. Spray-Dried and Spray-Freeze-Dried Powder Formulations of an Anti-Interleukin-4Rα Antibody for Pulmonary Delivery. Pan HW; Seow HC; Lo JCK; Guo J; Zhu L; Leung SWS; Zhang C; Lam JKW Pharm Res; 2022 Sep; 39(9):2291-2304. PubMed ID: 35879500 [TBL] [Abstract][Full Text] [Related]
32. Targeted PEG-poly(glutamic acid) complexes for inhalation protein delivery to the lung. Nieto-Orellana A; Li H; Rosiere R; Wauthoz N; Williams H; Monteiro CJ; Bosquillon C; Childerhouse N; Keegan G; Coghlan D; Mantovani G; Stolnik S J Control Release; 2019 Dec; 316():250-262. PubMed ID: 31678655 [TBL] [Abstract][Full Text] [Related]
33. Evaluation of the stability of a spray-dried tuberculosis vaccine candidate designed for dry powder respiratory delivery. Gomez M; McCollum J; Wang H; Bachchhav S; Tetreau I; Gerhardt A; Press C; Kramer RM; Fox CB; Vehring R Vaccine; 2021 Aug; 39(35):5025-5036. PubMed ID: 34256969 [TBL] [Abstract][Full Text] [Related]
34. Influenza vaccine powder formulation development: spray-freeze-drying and stability evaluation. Maa YF; Ameri M; Shu C; Payne LG; Chen D J Pharm Sci; 2004 Jul; 93(7):1912-23. PubMed ID: 15176078 [TBL] [Abstract][Full Text] [Related]
35. Development of a Spray-Dried Formulation of Peptide-DNA Nanoparticles into a Dry Powder for Pulmonary Delivery Using Factorial Design. Munir M; Kett VL; Dunne NJ; McCarthy HO Pharm Res; 2022 Jun; 39(6):1215-1232. PubMed ID: 35441318 [TBL] [Abstract][Full Text] [Related]
36. Establishment of an Evaluation Method for Gene Silencing by Serial Pulmonary Administration of siRNA and pDNA Powders: Naked siRNA Inhalation Powder Suppresses Luciferase Gene Expression in the Lung. Ito T; Okuda T; Takayama R; Okamoto H J Pharm Sci; 2019 Aug; 108(8):2661-2667. PubMed ID: 30954524 [TBL] [Abstract][Full Text] [Related]
37. A comparison between spray drying and spray freeze drying to produce an influenza subunit vaccine powder for inhalation. Saluja V; Amorij JP; Kapteyn JC; de Boer AH; Frijlink HW; Hinrichs WL J Control Release; 2010 Jun; 144(2):127-33. PubMed ID: 20219608 [TBL] [Abstract][Full Text] [Related]
38. Design of an inhalable dry powder formulation of DOTAP-modified PLGA nanoparticles loaded with siRNA. Jensen DK; Jensen LB; Koocheki S; Bengtson L; Cun D; Nielsen HM; Foged C J Control Release; 2012 Jan; 157(1):141-8. PubMed ID: 21864597 [TBL] [Abstract][Full Text] [Related]
39. Rifampicin-Carbohydrate Spray-Dried Nanocomposite: A Futuristic Multiparticulate Platform For Pulmonary Delivery. Mehanna MM; Mohyeldin SM; Elgindy NA Int J Nanomedicine; 2019; 14():9089-9112. PubMed ID: 31819421 [TBL] [Abstract][Full Text] [Related]
40. Inhalable Dry Powders for Lung mRNA Delivery. Gordon A; Li B; Witten J; Nguyen H; Anderson DG Adv Healthc Mater; 2024 Oct; ():e2400509. PubMed ID: 39352052 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]