These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 31629595)

  • 1. A bio-functions integration microcosm: Self-immobilized biochar-pellets combined with two strains of bacteria to remove atrazine in water and mechanisms.
    Yu T; Wang L; Ma F; Wang Y; Bai S
    J Hazard Mater; 2020 Feb; 384():121326. PubMed ID: 31629595
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-immobilized biomixture with pellets of Aspergillus niger Y3 and Arthrobacter. sp ZXY-2 to remove atrazine in water: A bio-functions integration system.
    Yu T; Wang L; Ma F; Yang J; Bai S; You J
    Sci Total Environ; 2019 Nov; 689():875-882. PubMed ID: 31280169
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel self-immobilized biomass mixture based on mycelium pellets for wastewater treatment: A review.
    Wang L; Yu T; Ma F; Vitus T; Bai S; Yang J
    Water Environ Res; 2019 Feb; 91(2):93-100. PubMed ID: 30735302
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effective sorption of atrazine by biochar colloids and residues derived from different pyrolysis temperatures.
    Yang F; Gao Y; Sun L; Zhang S; Li J; Zhang Y
    Environ Sci Pollut Res Int; 2018 Jul; 25(19):18528-18539. PubMed ID: 29700748
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Properties comparison of biochars from corn straw with different pretreatment and sorption behaviour of atrazine.
    Zhao X; Ouyang W; Hao F; Lin C; Wang F; Han S; Geng X
    Bioresour Technol; 2013 Nov; 147():338-344. PubMed ID: 23999263
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sorption properties of greenwaste biochar for two triazine pesticides.
    Zheng W; Guo M; Chow T; Bennett DN; Rajagopalan N
    J Hazard Mater; 2010 Sep; 181(1-3):121-6. PubMed ID: 20510513
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activated carbon/iron oxide composites for the removal of atrazine from aqueous medium.
    Castro CS; Guerreiro MC; Gonçalves M; Oliveira LC; Anastácio AS
    J Hazard Mater; 2009 May; 164(2-3):609-14. PubMed ID: 18838216
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization of atrazine and imidacloprid removal from water using biochars: Designing single or multi-staged batch adsorption systems.
    Mandal A; Singh N
    Int J Hyg Environ Health; 2017 May; 220(3):637-645. PubMed ID: 28433639
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adsorption and degradation in the removal of nonylphenol from water by cells immobilized on biochar.
    Lou L; Huang Q; Lou Y; Lu J; Hu B; Lin Q
    Chemosphere; 2019 Aug; 228():676-684. PubMed ID: 31063914
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biosorption of C.I. Direct Blue 199 from aqueous solution by nonviable Aspergillus niger.
    Xiong XJ; Meng XJ; Zheng TL
    J Hazard Mater; 2010 Mar; 175(1-3):241-6. PubMed ID: 19879044
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complete genome sequence of Arthrobacter sp. ZXY-2 associated with effective atrazine degradation and salt adaptation.
    Zhao X; Ma F; Feng C; Bai S; Yang J; Wang L
    J Biotechnol; 2017 Apr; 248():43-47. PubMed ID: 28315371
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probiotic removal of herbicides with endocrine disrupting potential from aqueous matrices.
    Wouters R; Lardenoit R; De Boever P; Verstraete W
    Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet; 2001; 66(1):5-13. PubMed ID: 15952424
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microalgal-biochar immobilized complex: A novel efficient biosorbent for cadmium removal from aqueous solution.
    Shen Y; Li H; Zhu W; Ho SH; Yuan W; Chen J; Xie Y
    Bioresour Technol; 2017 Nov; 244(Pt 1):1031-1038. PubMed ID: 28847109
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Atrazine removal using adsorption and electrochemical regeneration.
    Brown NW; Roberts EP; Chasiotis A; Cherdron T; Sanghrajka N
    Water Res; 2004 Jul; 38(13):3067-74. PubMed ID: 15261545
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The biosorption capacity of biochar for 4-bromodiphengl ether: study of its kinetics, mechanism, and use as a carrier for immobilized bacteria.
    Du J; Sun P; Feng Z; Zhang X; Zhao Y
    Environ Sci Pollut Res Int; 2016 Feb; 23(4):3770-80. PubMed ID: 26498816
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adsorption kinetics and mechanism of atrazine on iron-modified algal residue biochar in the presence of soil.
    Gao Z; Dai Z; Wang R; Li Y
    Environ Sci Pollut Res Int; 2023 Jun; 30(27):70506-70518. PubMed ID: 37147544
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation and characterization of EI-Co/Zr@AC and the mechanisms underlying its removal for atrazine in aqueous solution.
    Yang X; Liu D; He H; Zou J; Wang D; Zhang L; Tang Y
    Environ Sci Pollut Res Int; 2024 Jan; 31(4):5116-5131. PubMed ID: 38112872
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparative evaluation of biochar and Paenarthrobacter sp. AT5 for reducing atrazine risks to soybeans and bacterial communities in black soil.
    Harindintwali JD; He C; Wen X; Liu Y; Wang M; Fu Y; Xiang L; Jiang J; Jiang X; Wang F
    Environ Res; 2024 Jul; 252(Pt 4):119055. PubMed ID: 38710429
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Degradation of nonylphenol in water by microorganisms immobilized on bamboo charcoal.].
    Huang Q; Jiang MY; Wang LX; Lou LP
    Ying Yong Sheng Tai Xue Bao; 2018 May; 29(5):1677-1685. PubMed ID: 29797902
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Removal of triazine herbicides from aqueous systems by a biofilm reactor continuously or intermittently operated.
    Sánchez-Sánchez R; Ahuatzi-Chacón D; Galíndez-Mayer J; Ruiz-Ordaz N; Salmerón-Alcocer A
    J Environ Manage; 2013 Oct; 128():421-6. PubMed ID: 23792819
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.