BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

325 related articles for article (PubMed ID: 31629686)

  • 41. Pep2Path: automated mass spectrometry-guided genome mining of peptidic natural products.
    Medema MH; Paalvast Y; Nguyen DD; Melnik A; Dorrestein PC; Takano E; Breitling R
    PLoS Comput Biol; 2014 Sep; 10(9):e1003822. PubMed ID: 25188327
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A systematic comparison of natural product potential, with an emphasis on RiPPs, by mining of bacteria of three large ecosystems.
    Yi Y; Liang L; de Jong A; Kuipers OP
    Genomics; 2024 Jul; 116(4):110880. PubMed ID: 38857812
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Engineering lanthipeptides by introducing a large variety of RiPP modifications to obtain new-to-nature bioactive peptides.
    Fu Y; Xu Y; Ruijne F; Kuipers OP
    FEMS Microbiol Rev; 2023 May; 47(3):. PubMed ID: 37096385
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Radical SAM Enzymes and Ribosomally-Synthesized and Post-translationally Modified Peptides: A Growing Importance in the Microbiomes.
    Benjdia A; Berteau O
    Front Chem; 2021; 9():678068. PubMed ID: 34350157
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Uncovering Novel Peptide Chemistry from Bacterial Natural Products.
    Hubrich F; Lotti A; Scott TA; Piel J
    Chimia (Aarau); 2021 Jun; 75(6):543-547. PubMed ID: 34233822
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Engineering of new-to-nature ribosomally synthesized and post-translationally modified peptide natural products.
    Wu C; van der Donk WA
    Curr Opin Biotechnol; 2021 Jun; 69():221-231. PubMed ID: 33556835
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A scalable platform to discover antimicrobials of ribosomal origin.
    Ayikpoe RS; Shi C; Battiste AJ; Eslami SM; Ramesh S; Simon MA; Bothwell IR; Lee H; Rice AJ; Ren H; Tian Q; Harris LA; Sarksian R; Zhu L; Frerk AM; Precord TW; van der Donk WA; Mitchell DA; Zhao H
    Nat Commun; 2022 Oct; 13(1):6135. PubMed ID: 36253467
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Nocathioamides, Uncovered by a Tunable Metabologenomic Approach, Define a Novel Class of Chimeric Lanthipeptides.
    Saad H; Aziz S; Gehringer M; Kramer M; Straetener J; Berscheid A; Brötz-Oesterhelt H; Gross H
    Angew Chem Int Ed Engl; 2021 Jul; 60(30):16472-16479. PubMed ID: 33991039
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Legonaridin, a new member of linaridin RiPP from a Ghanaian Streptomyces isolate.
    Rateb ME; Zhai Y; Ehrner E; Rath CM; Wang X; Tabudravu J; Ebel R; Bibb M; Kyeremeh K; Dorrestein PC; Hong K; Jaspars M; Deng H
    Org Biomol Chem; 2015 Oct; 13(37):9585-92. PubMed ID: 26256511
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Ruminococcin C, an anti-clostridial sactipeptide produced by a prominent member of the human microbiota
    Balty C; Guillot A; Fradale L; Brewee C; Boulay M; Kubiak X; Benjdia A; Berteau O
    J Biol Chem; 2019 Oct; 294(40):14512-14525. PubMed ID: 31337708
    [TBL] [Abstract][Full Text] [Related]  

  • 51. VEMS 3.0: algorithms and computational tools for tandem mass spectrometry based identification of post-translational modifications in proteins.
    Matthiesen R; Trelle MB; Højrup P; Bunkenborg J; Jensen ON
    J Proteome Res; 2005; 4(6):2338-47. PubMed ID: 16335983
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Heterologous Production of Microbial Ribosomally Synthesized and Post-translationally Modified Peptides.
    Zhang Y; Chen M; Bruner SD; Ding Y
    Front Microbiol; 2018; 9():1801. PubMed ID: 30135682
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Bioinformatic prediction and experimental validation of RiPP recognition elements.
    Shelton KE; Mitchell DA
    Methods Enzymol; 2023; 679():191-233. PubMed ID: 36682862
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Expanding the Structural Space of Ribosomal Peptides: Autocatalytic N-Methylation in Omphalotin Biosynthesis.
    Aldemir H; Gulder TAM
    Angew Chem Int Ed Engl; 2017 Oct; 56(44):13570-13572. PubMed ID: 28949431
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Bioinformatic Atlas of Radical SAM Enzyme-Modified RiPP Natural Products Reveals an Isoleucine-Tryptophan Crosslink.
    Clark KA; Seyedsayamdost MR
    J Am Chem Soc; 2022 Oct; 144(39):17876-17888. PubMed ID: 36128669
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Discovery of Borosin Catalytic Strategies and Function through Bioinformatic Profiling.
    Lee AR; Carter RS; Imani AS; Dommaraju SR; Hudson GA; Mitchell DA; Freeman MF
    ACS Chem Biol; 2024 May; 19(5):1116-1124. PubMed ID: 38695893
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Antiviral activities and applications of ribosomally synthesized and post-translationally modified peptides (RiPPs).
    Fu Y; Jaarsma AH; Kuipers OP
    Cell Mol Life Sci; 2021 Apr; 78(8):3921-3940. PubMed ID: 33532865
    [TBL] [Abstract][Full Text] [Related]  

  • 58. RaS-RiPPs in Streptococci and the Human Microbiome.
    Clark KA; Bushin LB; Seyedsayamdost MR
    ACS Bio Med Chem Au; 2022 Aug; 2(4):328-339. PubMed ID: 35996476
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Selective Modification of Ribosomally Synthesized and Post-Translationally Modified Peptides (RiPPs) through Diels-Alder Cycloadditions on Dehydroalanine Residues.
    de Vries RH; Viel JH; Oudshoorn R; Kuipers OP; Roelfes G
    Chemistry; 2019 Oct; 25(55):12698-12702. PubMed ID: 31361053
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Bacterial Cytochrome P450 Catalyzed Post-translational Macrocyclization of Ribosomal Peptides.
    He BB; Liu J; Cheng Z; Liu R; Zhong Z; Gao Y; Liu H; Song ZM; Tian Y; Li YX
    Angew Chem Int Ed Engl; 2023 Nov; 62(46):e202311533. PubMed ID: 37767859
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.