These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

325 related articles for article (PubMed ID: 31629686)

  • 61. Systematic mining of the human microbiome identifies antimicrobial peptides with diverse activity spectra.
    King AM; Zhang Z; Glassey E; Siuti P; Clardy J; Voigt CA
    Nat Microbiol; 2023 Dec; 8(12):2420-2434. PubMed ID: 37973865
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Recent Advances in Discovery, Bioengineering, and Bioactivity-Evaluation of Ribosomally Synthesized and Post-translationally Modified Peptides.
    Zhong G; Wang ZJ; Yan F; Zhang Y; Huo L
    ACS Bio Med Chem Au; 2023 Feb; 3(1):1-31. PubMed ID: 37101606
    [TBL] [Abstract][Full Text] [Related]  

  • 63. RiPPMiner-Genome: A Web Resource for Automated Prediction of Crosslinked Chemical Structures of RiPPs by Genome Mining.
    Agrawal P; Amir S; Deepak ; Barua D; Mohanty D
    J Mol Biol; 2021 May; 433(11):166887. PubMed ID: 33972022
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Deciphering bioactive peptides and their action mechanisms through proteomics.
    Martinez OF; Agbale CM; Nomiyama F; Franco OL
    Expert Rev Proteomics; 2016 Nov; 13(11):1007-1016. PubMed ID: 27650042
    [TBL] [Abstract][Full Text] [Related]  

  • 65. RiPP antibiotics: biosynthesis and engineering potential.
    Hudson GA; Mitchell DA
    Curr Opin Microbiol; 2018 Oct; 45():61-69. PubMed ID: 29533845
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Aliphatic Ether Bond Formation Expands the Scope of Radical SAM Enzymes in Natural Product Biosynthesis.
    Clark KA; Bushin LB; Seyedsayamdost MR
    J Am Chem Soc; 2019 Jul; 141(27):10610-10615. PubMed ID: 31246011
    [TBL] [Abstract][Full Text] [Related]  

  • 67. The manifold roles of microbial ribosomal peptide-based natural products in physiology and ecology.
    Li Y; Rebuffat S
    J Biol Chem; 2020 Jan; 295(1):34-54. PubMed ID: 31784450
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Unveiling the Biosynthetic Pathway of the Ribosomally Synthesized and Post-translationally Modified Peptide Ustiloxin B in Filamentous Fungi.
    Ye Y; Minami A; Igarashi Y; Izumikawa M; Umemura M; Nagano N; Machida M; Kawahara T; Shin-Ya K; Gomi K; Oikawa H
    Angew Chem Int Ed Engl; 2016 Jul; 55(28):8072-5. PubMed ID: 27166860
    [TBL] [Abstract][Full Text] [Related]  

  • 69. A prevalent peptide-binding domain guides ribosomal natural product biosynthesis.
    Burkhart BJ; Hudson GA; Dunbar KL; Mitchell DA
    Nat Chem Biol; 2015 Aug; 11(8):564-70. PubMed ID: 26167873
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Novel approach in whole genome mining and transcriptome analysis reveal conserved RiPPs in Trichoderma spp.
    Vignolle GA; Mach RL; Mach-Aigner AR; Derntl C
    BMC Genomics; 2020 Mar; 21(1):258. PubMed ID: 32216757
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Unrestrictive identification of post-translational modifications through peptide mass spectrometry.
    Tanner S; Pevzner PA; Bafna V
    Nat Protoc; 2006; 1(1):67-72. PubMed ID: 17406213
    [TBL] [Abstract][Full Text] [Related]  

  • 72. The role of chemical synthesis in developing RiPP antibiotics.
    Rowe SM; Spring DR
    Chem Soc Rev; 2021 Apr; 50(7):4245-4258. PubMed ID: 33635302
    [TBL] [Abstract][Full Text] [Related]  

  • 73. A mass spectrometry-guided genome mining approach for natural product peptidogenomics.
    Kersten RD; Yang YL; Xu Y; Cimermancic P; Nam SJ; Fenical W; Fischbach MA; Moore BS; Dorrestein PC
    Nat Chem Biol; 2011 Oct; 7(11):794-802. PubMed ID: 21983601
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Enzymatic macrocyclization of ribosomally synthesized and posttranslational modified peptides
    Lu J; Li Y; Bai Z; Lv H; Wang H
    Nat Prod Rep; 2021 May; 38(5):981-992. PubMed ID: 33185226
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Genome-Guided Discovery of the First Myxobacterial Biarylitide Myxarylin Reveals Distinct C-N Biaryl Crosslinking in RiPP Biosynthesis.
    Hug JJ; Frank NA; Walt C; Šenica P; Panter F; Müller R
    Molecules; 2021 Dec; 26(24):. PubMed ID: 34946566
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Insights into post-translational modification enzymes from RiPPs: A toolkit for applications in peptide synthesis.
    Rodríguez V
    Biotechnol Adv; 2022; 56():107908. PubMed ID: 35032597
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Precursor-centric genome-mining approach for lasso peptide discovery.
    Maksimov MO; Pelczer I; Link AJ
    Proc Natl Acad Sci U S A; 2012 Sep; 109(38):15223-8. PubMed ID: 22949633
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Structural investigation of ribosomally synthesized natural products by hypothetical structure enumeration and evaluation using tandem MS.
    Zhang Q; Ortega M; Shi Y; Wang H; Melby JO; Tang W; Mitchell DA; van der Donk WA
    Proc Natl Acad Sci U S A; 2014 Aug; 111(33):12031-6. PubMed ID: 25092299
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Enzyme from an Uncultivated Sponge Bacterium Catalyzes S-Methylation in a Ribosomal Peptide.
    Helf MJ; Jud A; Piel J
    Chembiochem; 2017 Mar; 18(5):444-450. PubMed ID: 27966282
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Translation-Targeting RiPPs and Where to Find Them.
    Travin DY; Bikmetov D; Severinov K
    Front Genet; 2020; 11():226. PubMed ID: 32296456
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.