These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

325 related articles for article (PubMed ID: 31629686)

  • 81. Investigations into PoyH, a promiscuous protease from polytheonamide biosynthesis.
    Helf MJ; Freeman MF; Piel J
    J Ind Microbiol Biotechnol; 2019 Mar; 46(3-4):551-563. PubMed ID: 30627933
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Triculamin: An Unusual Lasso Peptide with Potent Antimycobacterial Activity.
    Andersen FD; Pedersen KD; Wilkens Juhl D; Mygind T; Chopin P; B Svenningsen E; Poulsen TB; Braad Lund M; Schramm A; Gotfredsen CH; Tørring T
    J Nat Prod; 2022 Jun; 85(6):1514-1521. PubMed ID: 35748039
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Mining and Biosynthesis of Bioactive Lanthipeptides From Microorganisms.
    Li C; Alam K; Zhao Y; Hao J; Yang Q; Zhang Y; Li R; Li A
    Front Bioeng Biotechnol; 2021; 9():692466. PubMed ID: 34395400
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Mimicry of a Non-ribosomally Produced Antimicrobial, Brevicidine, by Ribosomal Synthesis and Post-translational Modification.
    Zhao X; Li Z; Kuipers OP
    Cell Chem Biol; 2020 Oct; 27(10):1262-1271.e4. PubMed ID: 32707039
    [TBL] [Abstract][Full Text] [Related]  

  • 85. The role of protein-protein interactions in the biosynthesis of ribosomally synthesized and post-translationally modified peptides.
    Sikandar A; Koehnke J
    Nat Prod Rep; 2019 Nov; 36(11):1576-1588. PubMed ID: 30920567
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Current Advancements in Sactipeptide Natural Products.
    Chen Y; Wang J; Li G; Yang Y; Ding W
    Front Chem; 2021; 9():595991. PubMed ID: 34095082
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Cyclisation mechanisms in the biosynthesis of ribosomally synthesised and post-translationally modified peptides.
    Truman AW
    Beilstein J Org Chem; 2016; 12():1250-68. PubMed ID: 27559376
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Structure and Biosynthesis of Crocagins: Polycyclic Posttranslationally Modified Ribosomal Peptides from Chondromyces crocatus.
    Viehrig K; Surup F; Volz C; Herrmann J; Abou Fayad A; Adam S; Köhnke J; Trauner D; Müller R
    Angew Chem Int Ed Engl; 2017 Jun; 56(26):7407-7410. PubMed ID: 28544148
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Functional expression of diverse post-translational peptide-modifying enzymes in Escherichia coli under uniform expression and purification conditions.
    Glassey E; King AM; Anderson DA; Zhang Z; Voigt CA
    PLoS One; 2022; 17(9):e0266488. PubMed ID: 36121811
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Engineering of RiPP pathways for the production of artificial peptides bearing various non-proteinogenic structures.
    Goto Y; Suga H
    Curr Opin Chem Biol; 2018 Oct; 46():82-90. PubMed ID: 29957445
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Put a Bow on It: Knotted Antibiotics Take Center Stage.
    Tan S; Moore G; Nodwell J
    Antibiotics (Basel); 2019 Aug; 8(3):. PubMed ID: 31405236
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Biosynthesis of bioactive natural products from Basidiomycota.
    Lin HC; Hewage RT; Lu YC; Chooi YH
    Org Biomol Chem; 2019 Jan; 17(5):1027-1036. PubMed ID: 30608100
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Bioinformatic Expansion of Borosins Uncovers Trans-Acting Peptide Backbone
    Cho H; Lee H; Hong K; Chung H; Song I; Lee JS; Kim S
    Biochemistry; 2022 Feb; 61(3):183-194. PubMed ID: 35061348
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Ribosomally synthesized peptides, foreground players in microbial interactions: recent developments and unanswered questions.
    Rebuffat S
    Nat Prod Rep; 2022 Feb; 39(2):273-310. PubMed ID: 34755755
    [TBL] [Abstract][Full Text] [Related]  

  • 95. How a Subfamily of Radical S-Adenosylmethionine Enzymes Became a Mainstay of Ribosomally Synthesized and Post-translationally Modified Peptide Discovery.
    Mendauletova A; Kostenko A; Lien Y; Latham J
    ACS Bio Med Chem Au; 2022 Feb; 2(1):53-59. PubMed ID: 37102180
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Dereplication, sequencing and identification of peptidic natural products: from genome mining to peptidogenomics to spectral networks.
    Mohimani H; Pevzner PA
    Nat Prod Rep; 2016 Jan; 33(1):73-86. PubMed ID: 26497201
    [TBL] [Abstract][Full Text] [Related]  

  • 97. NeuRiPP: Neural network identification of RiPP precursor peptides.
    de Los Santos ELC
    Sci Rep; 2019 Sep; 9(1):13406. PubMed ID: 31527713
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Post-translational modifications involved in the biosynthesis of thiopeptide antibiotics.
    Zheng Q; Fang H; Liu W
    Org Biomol Chem; 2017 Apr; 15(16):3376-3390. PubMed ID: 28358161
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Global Genome Mining Reveals the Distribution of Diverse Thioamidated RiPP Biosynthesis Gene Clusters.
    Malit JJL; Wu C; Liu LL; Qian PY
    Front Microbiol; 2021; 12():635389. PubMed ID: 33995295
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Landornamides: Antiviral Ornithine-Containing Ribosomal Peptides Discovered through Genome Mining.
    Bösch NM; Borsa M; Greczmiel U; Morinaka BI; Gugger M; Oxenius A; Vagstad AL; Piel J
    Angew Chem Int Ed Engl; 2020 Jul; 59(29):11763-11768. PubMed ID: 32163654
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.