These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

347 related articles for article (PubMed ID: 31630082)

  • 1. Changes over time in the electrically evoked compound action potential (ECAP) interphase gap (IPG) effect following cochlear implantation in Guinea pigs.
    Schvartz-Leyzac KC; Colesa DJ; Buswinka CJ; Swiderski DL; Raphael Y; Pfingst BE
    Hear Res; 2019 Nov; 383():107809. PubMed ID: 31630082
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrophysiological Estimates of the Electrode-Neuron Interface Differ Between Younger and Older Listeners With Cochlear Implants.
    Jahn KN; Arenberg JG
    Ear Hear; 2020; 41(4):948-960. PubMed ID: 32032228
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Across-site patterns of electrically evoked compound action potential amplitude-growth functions in multichannel cochlear implant recipients and the effects of the interphase gap.
    Schvartz-Leyzac KC; Pfingst BE
    Hear Res; 2016 Nov; 341():50-65. PubMed ID: 27521841
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How electrically evoked compound action potentials in chronically implanted guinea pigs relate to auditory nerve health and electrode impedance.
    Schvartz-Leyzac KC; Colesa DJ; Buswinka CJ; Rabah AM; Swiderski DL; Raphael Y; Pfingst BE
    J Acoust Soc Am; 2020 Dec; 148(6):3900. PubMed ID: 33379919
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in the Electrically Evoked Compound Action Potential over time After Implantation and Subsequent Deafening in Guinea Pigs.
    Ramekers D; Benav H; Klis SFL; Versnel H
    J Assoc Res Otolaryngol; 2022 Dec; 23(6):721-738. PubMed ID: 35948695
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neurotrophin Gene Therapy in Deafened Ears with Cochlear Implants: Long-term Effects on Nerve Survival and Functional Measures.
    Pfingst BE; Colesa DJ; Swiderski DL; Hughes AP; Strahl SB; Sinan M; Raphael Y
    J Assoc Res Otolaryngol; 2017 Dec; 18(6):731-750. PubMed ID: 28776202
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using the electrically-evoked compound action potential (ECAP) interphase gap effect to select electrode stimulation sites in cochlear implant users.
    Schvartz-Leyzac KC; Zwolan TA; Pfingst BE
    Hear Res; 2021 Jul; 406():108257. PubMed ID: 34020316
    [TBL] [Abstract][Full Text] [Related]  

  • 8. What can stimulus polarity and interphase gap tell us about auditory nerve function in cochlear-implant recipients?
    Hughes ML; Choi S; Glickman E
    Hear Res; 2018 Mar; 359():50-63. PubMed ID: 29307495
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of interphase gap and pulse duration on electrically evoked potentials is correlated with auditory nerve survival.
    Prado-Guitierrez P; Fewster LM; Heasman JM; McKay CM; Shepherd RK
    Hear Res; 2006 May; 215(1-2):47-55. PubMed ID: 16644157
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insertion trauma and recovery of function after cochlear implantation: Evidence from objective functional measures.
    Pfingst BE; Hughes AP; Colesa DJ; Watts MM; Strahl SB; Raphael Y
    Hear Res; 2015 Dec; 330(Pt A):98-105. PubMed ID: 26209185
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Effect of Interphase Gap on Neural Response of the Electrically Stimulated Cochlear Nerve in Children With Cochlear Nerve Deficiency and Children With Normal-Sized Cochlear Nerves.
    He S; Xu L; Skidmore J; Chao X; Jeng FC; Wang R; Luo J; Wang H
    Ear Hear; 2020; 41(4):918-934. PubMed ID: 31688319
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a chronically-implanted mouse model for studies of cochlear health and implant function.
    Colesa DJ; Devare J; Swiderski DL; Beyer LA; Raphael Y; Pfingst BE
    Hear Res; 2021 May; 404():108216. PubMed ID: 33691255
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Broadly Applicable Method for Characterizing the Slope of the Electrically Evoked Compound Action Potential Amplitude Growth Function.
    Skidmore J; Ramekers D; Colesa DJ; Schvartz-Leyzac KC; Pfingst BE; He S
    Ear Hear; 2022; 43(1):150-164. PubMed ID: 34241983
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amplitude Growth Functions of Auditory Nerve Responses to Electric Pulse Stimulation With Varied Interphase Gaps in Cochlear Implant Users With Ipsilateral Residual Hearing.
    Imsiecke M; Büchner A; Lenarz T; Nogueira W
    Trends Hear; 2021; 25():23312165211014137. PubMed ID: 34181493
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identifying Cochlear Implant Channels With Relatively Poor Electrode-Neuron Interfaces Using the Electrically Evoked Compound Action Potential.
    Jahn KN; Arenberg JG
    Ear Hear; 2020; 41(4):961-973. PubMed ID: 31972772
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Late electrically-evoked compound action potentials as markers for acute micro-lesions of spiral ganglion neurons.
    Konerding W; Arenberg JG; Kral A; Baumhoff P
    Hear Res; 2022 Jan; 413():108057. PubMed ID: 32883545
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recovery characteristics of the electrically stimulated auditory nerve in deafened guinea pigs: relation to neuronal status.
    Ramekers D; Versnel H; Strahl SB; Klis SF; Grolman W
    Hear Res; 2015 Mar; 321():12-24. PubMed ID: 25582354
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Auditory-nerve responses to varied inter-phase gap and phase duration of the electric pulse stimulus as predictors for neuronal degeneration.
    Ramekers D; Versnel H; Strahl SB; Smeets EM; Klis SF; Grolman W
    J Assoc Res Otolaryngol; 2014 Apr; 15(2):187-202. PubMed ID: 24469861
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Speech Perception Performance in Cochlear Implant Recipients Correlates to the Number and Synchrony of Excited Auditory Nerve Fibers Derived From Electrically Evoked Compound Action Potentials.
    Dong Y; Briaire JJ; Stronks HC; Frijns JHM
    Ear Hear; 2023 Mar-Apr 01; 44(2):276-286. PubMed ID: 36253905
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimating health of the implanted cochlea using psychophysical strength-duration functions and electrode configuration.
    Garadat SN; Colesa DJ; Swiderski DL; Raphael Y; Pfingst BE
    Hear Res; 2022 Feb; 414():108404. PubMed ID: 34883366
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.