These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 31630280)

  • 21. Verification and comparison of four numerical schemes for a 1D viscoelastic blood flow model.
    Wang X; Fullana JM; Lagrée PY
    Comput Methods Biomech Biomed Engin; 2015; 18(15):1704-25. PubMed ID: 25145651
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Multi-scale finite element analyses for stress and strain evaluations of braid fibril artificial blood vessel and smooth muscle cell.
    Nakamachi E; Uchida T; Kuramae H; Morita Y
    Int J Numer Method Biomed Eng; 2014 Aug; 30(8):796-813. PubMed ID: 24599892
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Non-integer viscoelastic constitutive law to model soft biological tissues to in-vivo indentation.
    Demirci N; Tönük E
    Acta Bioeng Biomech; 2014; 16(4):13-21. PubMed ID: 25597890
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Viscoelastic material properties of the myocardium and cardiac jelly in the looping chick heart.
    Yao J; Varner VD; Brilli LL; Young JM; Taber LA; Perucchio R
    J Biomech Eng; 2012 Feb; 134(2):024502. PubMed ID: 22482677
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A finite difference method with subsampling for immersed boundary simulations of the capsule dynamics with viscoelastic membranes.
    Li P; Zhang J
    Int J Numer Method Biomed Eng; 2019 Jun; 35(6):e3200. PubMed ID: 30884167
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A transmurally heterogeneous orthotropic activation model for ventricular contraction and its numerical validation.
    Barbarotta L; Rossi S; Dedè L; Quarteroni A
    Int J Numer Method Biomed Eng; 2018 Dec; 34(12):e3137. PubMed ID: 30070071
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Validation and application of an intervertebral disc finite element model utilizing independently constructed tissue-level constitutive formulations that are nonlinear, anisotropic, and time-dependent.
    Jacobs NT; Cortes DH; Peloquin JM; Vresilovic EJ; Elliott DM
    J Biomech; 2014 Aug; 47(11):2540-6. PubMed ID: 24998992
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Finite-difference and integral schemes for Maxwell viscous stress calculation in immersed boundary simulations of viscoelastic membranes.
    Li P; Zhang J
    Biomech Model Mechanobiol; 2020 Dec; 19(6):2667-2681. PubMed ID: 32621160
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electromechanical model of excitable tissue to study reentrant cardiac arrhythmias.
    Nash MP; Panfilov AV
    Prog Biophys Mol Biol; 2004; 85(2-3):501-22. PubMed ID: 15142759
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A bilinear stress-strain relationship for arteries.
    Zhang W; Kassab GS
    Biomaterials; 2007 Feb; 28(6):1307-15. PubMed ID: 17112583
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Incorporating inductances in tissue-scale models of cardiac electrophysiology.
    Rossi S; Griffith BE
    Chaos; 2017 Sep; 27(9):093926. PubMed ID: 28964127
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nonlinear incompressible finite element for simulating loading of cardiac tissue--Part II: Three dimensional formulation for thick ventricular wall segments.
    Horowitz A; Sheinman I; Lanir Y
    J Biomech Eng; 1988 Feb; 110(1):62-8. PubMed ID: 3347025
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanical characterization of human brain tissue.
    Budday S; Sommer G; Birkl C; Langkammer C; Haybaeck J; Kohnert J; Bauer M; Paulsen F; Steinmann P; Kuhl E; Holzapfel GA
    Acta Biomater; 2017 Jan; 48():319-340. PubMed ID: 27989920
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fibroblast proliferation alters cardiac excitation conduction and contraction: a computational study.
    Zhan HQ; Xia L; Shou GF; Zang YL; Liu F; Crozier S
    J Zhejiang Univ Sci B; 2014 Mar; 15(3):225-42. PubMed ID: 24599687
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hyper-viscoelastic damage modeling of whole blood clot under large deformation.
    Rausch MK; Sugerman GP; Kakaletsis S; Dortdivanlioglu B
    Biomech Model Mechanobiol; 2021 Oct; 20(5):1645-1657. PubMed ID: 34080080
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Three dimensional electromechanical model of porcine heart with penetrating wound injury.
    Usyk T; Kerckhoffs R
    Stud Health Technol Inform; 2005; 111():568-73. PubMed ID: 15718799
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electromechanical feedback with reduced cellular connectivity alters electrical activity in an infarct injured left ventricle: a finite element model study.
    Wall ST; Guccione JM; Ratcliffe MB; Sundnes JS
    Am J Physiol Heart Circ Physiol; 2012 Jan; 302(1):H206-14. PubMed ID: 22058157
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Viscoelastic effects during loading play an integral role in soft tissue mechanics.
    Troyer KL; Estep DJ; Puttlitz CM
    Acta Biomater; 2012 Jan; 8(1):234-43. PubMed ID: 21855664
    [TBL] [Abstract][Full Text] [Related]  

  • 39. New methodology for mechanical characterization of human superficial facial tissue anisotropic behaviour in vivo.
    Then C; Stassen B; Depta K; Silber G
    J Mech Behav Biomed Mater; 2017 Jul; 71():68-79. PubMed ID: 28259786
    [TBL] [Abstract][Full Text] [Related]  

  • 40. New developments in a strongly coupled cardiac electromechanical model.
    Nickerson D; Smith N; Hunter P
    Europace; 2005 Sep; 7 Suppl 2():118-27. PubMed ID: 16102509
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.