These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 31630483)

  • 1. Evolutionary and cardio-respiratory physiology of air-breathing and amphibious fishes.
    Damsgaard C; Baliga VB; Bates E; Burggren W; McKenzie DJ; Taylor E; Wright PA
    Acta Physiol (Oxf); 2020 Mar; 228(3):e13406. PubMed ID: 31630483
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Breathing air in air: in what ways might extant amphibious fish biology relate to prevailing concepts about early tetrapods, the evolution of vertebrate air breathing, and the vertebrate land transition?
    Graham JB; Lee HJ
    Physiol Biochem Zool; 2004; 77(5):720-31. PubMed ID: 15547791
    [TBL] [Abstract][Full Text] [Related]  

  • 3. More than Breathing Air: Evolutionary Drivers and Physiological Implications of an Amphibious Lifestyle in Fishes.
    Turko AJ; Rossi GS; Wright PA
    Physiology (Bethesda); 2021 Sep; 36(5):307-314. PubMed ID: 34431416
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amphibious fishes: evolution and phenotypic plasticity.
    Wright PA; Turko AJ
    J Exp Biol; 2016 Aug; 219(Pt 15):2245-59. PubMed ID: 27489213
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theme and variations: amphibious air-breathing intertidal fishes.
    Martin KL
    J Fish Biol; 2014 Mar; 84(3):577-602. PubMed ID: 24344914
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Air- breathing in fish: Air- breathing organs and control of respiration: Nerves and neurotransmitters in the air-breathing organs and the skin.
    Zaccone G; Lauriano ER; Capillo G; Kuciel M
    Acta Histochem; 2018 Oct; 120(7):630-641. PubMed ID: 30266194
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cardiorespiratory physiological phenotypic plasticity in developing air-breathing anabantid fishes (
    Mendez-Sanchez JF; Burggren WW
    Physiol Rep; 2017 Aug; 5(15):. PubMed ID: 28778991
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neuropeptides and nitric oxide synthase in the gill and the air-breathing organs of fishes.
    Zaccone G; Mauceri A; Fasulo S
    J Exp Zool A Comp Exp Biol; 2006 May; 305(5):428-39. PubMed ID: 16506226
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tracing the genetic footprints of vertebrate landing in non-teleost ray-finned fishes.
    Bi X; Wang K; Yang L; Pan H; Jiang H; Wei Q; Fang M; Yu H; Zhu C; Cai Y; He Y; Gan X; Zeng H; Yu D; Zhu Y; Jiang H; Qiu Q; Yang H; Zhang YE; Wang W; Zhu M; He S; Zhang G
    Cell; 2021 Mar; 184(5):1377-1391.e14. PubMed ID: 33545088
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Air-breathing fishes in aquaculture. What can we learn from physiology?
    Lefevre S; Wang T; Jensen A; Cong NV; Huong DT; Phuong NT; Bayley M
    J Fish Biol; 2014 Mar; 84(3):705-31. PubMed ID: 24498927
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemoreceptor modulation of endogenous respiratory rhythms in vertebrates.
    Smatresk NJ
    Am J Physiol; 1990 Nov; 259(5 Pt 2):R887-97. PubMed ID: 2240273
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transition in organ function during the evolution of air-breathing; insights from Arapaima gigas, an obligate air-breathing teleost from the Amazon.
    Brauner CJ; Matey V; Wilson JM; Bernier NJ; Val AL
    J Exp Biol; 2004 Apr; 207(Pt 9):1433-8. PubMed ID: 15037637
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Skin ionocyte density of amphibious killifishes is shaped by phenotypic plasticity and constitutive interspecific differences.
    Tunnah L; Turko AJ; Wright PA
    J Comp Physiol B; 2022 Nov; 192(6):701-711. PubMed ID: 36056931
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cardiorespiratory adaptations in the transition from water breathing to air breathing. Introduction.
    Johansen K
    Fed Proc; 1970; 29(3):1118-9. PubMed ID: 5443779
    [No Abstract]   [Full Text] [Related]  

  • 15. Aquatic-terrestrial transitions of feeding systems in vertebrates: a mechanical perspective.
    Heiss E; Aerts P; Van Wassenbergh S
    J Exp Biol; 2018 Apr; 221(Pt 8):. PubMed ID: 29695537
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acid-base and ion balance in fishes with bimodal respiration.
    Shartau RB; Brauner CJ
    J Fish Biol; 2014 Mar; 84(3):682-704. PubMed ID: 24502749
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sustained periodic terrestrial locomotion in air-breathing fishes.
    Pace CM; Gibb AC
    J Fish Biol; 2014 Mar; 84(3):639-60. PubMed ID: 24502775
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vertebrate land invasions-past, present, and future: an introduction to the symposium.
    Ashley-Ross MA; Hsieh ST; Gibb AC; Blob RW
    Integr Comp Biol; 2013 Aug; 53(2):192-6. PubMed ID: 23660589
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolutionary patterns of diadromy in fishes: more than a transitional state between marine and freshwater.
    Corush JB
    BMC Evol Biol; 2019 Aug; 19(1):168. PubMed ID: 31412761
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxygenation properties of hemoglobin and the evolutionary origins of isoform multiplicity in an amphibious air-breathing fish, the blue-spotted mudskipper (
    Storz JF; Natarajan C; Grouleff MK; Vandewege M; Hoffmann FG; You X; Venkatesh B; Fago A
    J Exp Biol; 2020 Jan; 223(Pt 2):. PubMed ID: 31836650
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.