BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

352 related articles for article (PubMed ID: 31630774)

  • 1. Influence of IMU position and orientation placement errors on ground reaction force estimation.
    Tan T; Chiasson DP; Hu H; Shull PB
    J Biomech; 2019 Dec; 97():109416. PubMed ID: 31630774
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Indirect measurement of anterior-posterior ground reaction forces using a minimal set of wearable inertial sensors: from healthy to hemiparetic walking.
    Revi DA; Alvarez AM; Walsh CJ; De Rossi SMM; Awad LN
    J Neuroeng Rehabil; 2020 Jun; 17(1):82. PubMed ID: 32600348
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real-Time Ground Reaction Force and Knee Extension Moment Estimation During Drop Landings Via Modular LSTM Modeling and Wearable IMUs.
    Sun T; Li D; Fan B; Tan T; Shull PB
    IEEE J Biomed Health Inform; 2023 Jul; 27(7):3222-3233. PubMed ID: 37104102
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of gait events and kinetic waveforms with wearable sensors and machine learning when running in an unconstrained environment.
    Donahue SR; Hahn ME
    Sci Rep; 2023 Feb; 13(1):2339. PubMed ID: 36759681
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real-Life Measurement of Tri-Axial Walking Ground Reaction Forces Using Optimal Network of Wearable Inertial Measurement Units.
    Shahabpoor E; Pavic A; Brownjohn JMW; Billings SA; Guo LZ; Bocian M
    IEEE Trans Neural Syst Rehabil Eng; 2018 Jun; 26(6):1243-1253. PubMed ID: 29877849
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The relationship between inertial measurement unit-derived 'force signatures' and ground reaction forces during cricket pace bowling.
    Callaghan SJ; Lockie RG; Andrews WA; Chipchase RF; Nimphius S
    Sports Biomech; 2020 Jun; 19(3):307-321. PubMed ID: 29767577
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An IMU-Based Ground Reaction Force Estimation Method and Its Application in Walking Balance Assessment.
    Liu X; Zhang X; Zhang B; Zhou B; He Z; Liu T
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():223-232. PubMed ID: 38153831
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimation of Tri-Axial Walking Ground Reaction Forces of Left and Right Foot from Total Forces in Real-Life Environments.
    Shahabpoor E; Pavic A
    Sensors (Basel); 2018 Jun; 18(6):. PubMed ID: 29921797
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lower body kinematics estimation from wearable sensors for walking and running: A deep learning approach.
    Hernandez V; Dadkhah D; Babakeshizadeh V; Kulić D
    Gait Posture; 2021 Jan; 83():185-193. PubMed ID: 33161275
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional GRF and CoP Estimation during Stair and Slope Ascent/Descent with Wearable IMUs and Foot Pressure Sensors.
    Fukushi K; Sekiguchi Y; Honda K; Yaguchi H; Izumi SI
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():6401-6404. PubMed ID: 31947307
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accurate Impact Loading Rate Estimation During Running via a Subject-Independent Convolutional Neural Network Model and Optimal IMU Placement.
    Tan T; Strout ZA; Shull PB
    IEEE J Biomed Health Inform; 2021 Apr; 25(4):1215-1222. PubMed ID: 32763858
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determining inertial measurement unit placement for estimating human trunk sway while standing, walking and running.
    Bo Yu ; Tian Bao ; Dingguo Zhang ; Carender W; Sienko KH; Shull PB
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():4651-4. PubMed ID: 26737331
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Smoother-Based 3-D Foot Trajectory Estimation Using Inertial Sensors.
    Hao M; Chen K; Fu C
    IEEE Trans Biomed Eng; 2019 Dec; 66(12):3534-3542. PubMed ID: 30932822
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamically adjustable foot-ground contact model to estimate ground reaction force during walking and running.
    Jung Y; Jung M; Ryu J; Yoon S; Park SK; Koo S
    Gait Posture; 2016 Mar; 45():62-8. PubMed ID: 26979885
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Technology in Strength and Conditioning: Assessing Bodyweight Squat Technique With Wearable Sensors.
    OʼReilly MA; Whelan DF; Ward TE; Delahunt E; Caulfield BM
    J Strength Cond Res; 2017 Aug; 31(8):2303-2312. PubMed ID: 28731981
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automatic Body Segment and Side Recognition of an Inertial Measurement Unit Sensor during Gait.
    Baniasad M; Martin R; Crevoisier X; Pichonnaz C; Becce F; Aminian K
    Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050647
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Infant trunk posture and arm movement assessment using pressure mattress, inertial and magnetic measurement units (IMUs).
    Rihar A; Mihelj M; Pašič J; Kolar J; Munih M
    J Neuroeng Rehabil; 2014 Sep; 11():133. PubMed ID: 25194825
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-Supervised Learning Improves Accuracy and Data Efficiency for IMU-Based Ground Reaction Force Estimation.
    Tan T; Shull PB; Hicks JL; Uhlrich SD; Chaudhari AS
    IEEE Trans Biomed Eng; 2024 Jul; 71(7):2095-2104. PubMed ID: 38315597
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A 0.05 m Change in Inertial Measurement Unit Placement Alters Time and Frequency Domain Metrics during Running.
    Kiernan D; Katzman ZD; Hawkins DA; Christiansen BA
    Sensors (Basel); 2024 Jan; 24(2):. PubMed ID: 38276348
    [TBL] [Abstract][Full Text] [Related]  

  • 20. IMU-to-Segment Assignment and Orientation Alignment for the Lower Body Using Deep Learning.
    Zimmermann T; Taetz B; Bleser G
    Sensors (Basel); 2018 Jan; 18(1):. PubMed ID: 29351262
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.