These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Anopheles gambiae odorant binding protein crystal complex with the synthetic repellent DEET: implications for structure-based design of novel mosquito repellents. Tsitsanou KE; Thireou T; Drakou CE; Koussis K; Keramioti MV; Leonidas DD; Eliopoulos E; Iatrou K; Zographos SE Cell Mol Life Sci; 2012 Jan; 69(2):283-97. PubMed ID: 21671117 [TBL] [Abstract][Full Text] [Related]
5. Inhibition of Anopheles gambiae odorant receptor function by mosquito repellents. Tsitoura P; Koussis K; Iatrou K J Biol Chem; 2015 Mar; 290(12):7961-72. PubMed ID: 25657000 [TBL] [Abstract][Full Text] [Related]
6. Insect odorant receptors are molecular targets of the insect repellent DEET. Ditzen M; Pellegrino M; Vosshall LB Science; 2008 Mar; 319(5871):1838-42. PubMed ID: 18339904 [TBL] [Abstract][Full Text] [Related]
7. orco mutant mosquitoes lose strong preference for humans and are not repelled by volatile DEET. DeGennaro M; McBride CS; Seeholzer L; Nakagawa T; Dennis EJ; Goldman C; Jasinskiene N; James AA; Vosshall LB Nature; 2013 Jun; 498(7455):487-91. PubMed ID: 23719379 [TBL] [Abstract][Full Text] [Related]
8. Mosquito odorant receptor for DEET and methyl jasmonate. Xu P; Choo YM; De La Rosa A; Leal WS Proc Natl Acad Sci U S A; 2014 Nov; 111(46):16592-7. PubMed ID: 25349401 [TBL] [Abstract][Full Text] [Related]
9. Insecticidal and Behavioral Avoidance Responses of Anopheles minimus and Culex quinquefasciatus (Diptera: Culicidae) to Three Synthetic Repellents. Boonyuan W; Sathantriphop S; Tainchum K; Muenworn V; Prabaripai A; Bangs MJ; Chareonviriyaphap T J Med Entomol; 2017 Sep; 54(5):1312-1322. PubMed ID: 28419272 [TBL] [Abstract][Full Text] [Related]
10. Repellent and deterrent effects of SS220, Picaridin, and Deet suppress human blood feeding by Aedes aegypti, Anopheles stephensi, and Phlebotomus papatasi. Klun JA; Khrimian A; Debboun M J Med Entomol; 2006 Jan; 43(1):34-9. PubMed ID: 16506445 [TBL] [Abstract][Full Text] [Related]
11. New insights on repellent recognition by Anopheles gambiae odorant-binding protein 1. Tzotzos G; Iley JN; Moore EA PLoS One; 2018; 13(4):e0194724. PubMed ID: 29614080 [TBL] [Abstract][Full Text] [Related]
13. Interactions of DEET and Novel Repellents With Mosquito Odorant Receptors. Grant GG; Estrera RR; Pathak N; Hall CD; Tsikolia M; Linthicum KJ; Bernier UR; Hall AC J Med Entomol; 2020 Jul; 57(4):1032-1040. PubMed ID: 32048720 [TBL] [Abstract][Full Text] [Related]
14. How computational studies of mosquito repellents contribute to the control of vector Borne Diseases. Miszta P; Basak SC; Natarajan R; Nowak W Curr Comput Aided Drug Des; 2013 Sep; 9(3):300-7. PubMed ID: 24010929 [TBL] [Abstract][Full Text] [Related]
15. Bitter-sensitive gustatory receptor neuron responds to chemically diverse insect repellents in the common malaria mosquito Anopheles quadrimaculatus. Sparks JT; Dickens JC Naturwissenschaften; 2016 Jun; 103(5-6):39. PubMed ID: 27108454 [TBL] [Abstract][Full Text] [Related]
17. Interactions of Anopheles gambiae odorant-binding proteins with a human-derived repellent: implications for the mode of action of n,n-diethyl-3-methylbenzamide (DEET). Murphy EJ; Booth JC; Davrazou F; Port AM; Jones DN J Biol Chem; 2013 Feb; 288(6):4475-85. PubMed ID: 23261834 [TBL] [Abstract][Full Text] [Related]
18. A Pichia biosensor for high-throughput analyses of compounds that can influence mosquito behavior. Varela JN; Yadav VG Microbiologyopen; 2021 Jan; 10(1):e1139. PubMed ID: 33264511 [TBL] [Abstract][Full Text] [Related]
19. Neurophysiological and behavioral responses of gypsy moth larvae to insect repellents: DEET, IR3535, and picaridin. Sanford JL; Barski SA; Seen CM; Dickens JC; Shields VD PLoS One; 2014; 9(6):e99924. PubMed ID: 24955823 [TBL] [Abstract][Full Text] [Related]