These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

333 related articles for article (PubMed ID: 31631011)

  • 21. Covalent inhibitors: back on track?
    Gehringer M
    Future Med Chem; 2020 Aug; 12(15):1363-1368. PubMed ID: 32597212
    [No Abstract]   [Full Text] [Related]  

  • 22. Covalent drug discovery using sulfur(VI) fluoride exchange warheads.
    Huang H; Jones LH
    Expert Opin Drug Discov; 2023 Jul; 18(7):725-735. PubMed ID: 37243622
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cysteine mapping in conformationally distinct kinase nucleotide binding sites: application to the design of selective covalent inhibitors.
    Leproult E; Barluenga S; Moras D; Wurtz JM; Winssinger N
    J Med Chem; 2011 Mar; 54(5):1347-55. PubMed ID: 21322567
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The expanding repertoire of covalent warheads for drug discovery.
    Mehta NV; Degani MS
    Drug Discov Today; 2023 Dec; 28(12):103799. PubMed ID: 37839776
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Recent progress in covalent warheads for in vivo targeting of endogenous proteins.
    Shindo N; Ojida A
    Bioorg Med Chem; 2021 Oct; 47():116386. PubMed ID: 34509863
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Approaches to mitigate the risk of serious adverse reactions in covalent drug design.
    Baillie TA
    Expert Opin Drug Discov; 2021 Mar; 16(3):275-287. PubMed ID: 33006907
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Development of Inhibitors of Protein-protein Interactions through REPLACE: Application to the Design and Development Non-ATP Competitive CDK Inhibitors.
    Nandha Premnath P; Craig S; McInnes C
    J Vis Exp; 2015 Oct; (105):e52441. PubMed ID: 26554946
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantitative Lysine Reactivity Profiling Reveals Conformational Inhibition Dynamics and Potency of Aurora A Kinase Inhibitors.
    Chen J; Wang A; Liu B; Zhou Y; Luo P; Zhang Z; Li G; Liu Q; Wang F
    Anal Chem; 2019 Oct; 91(20):13222-13229. PubMed ID: 31525957
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Selectivity and potency of cyclin-dependent kinase inhibitors.
    Sridhar J; Akula N; Pattabiraman N
    AAPS J; 2006 Mar; 8(1):E204-21. PubMed ID: 16584130
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Design and synthesis of 4-(2,3-dihydro-1H-benzo[d]pyrrolo[1,2-a]imidazol-7-yl)-N-(5-(piperazin-1-ylmethyl)pyridine-2-yl)pyrimidin-2-amine as a highly potent and selective cyclin-dependent kinases 4 and 6 inhibitors and the discovery of structure-activity relationships.
    Wang Y; Liu WJ; Yin L; Li H; Chen ZH; Zhu DX; Song XQ; Cheng ZZ; Song P; Wang Z; Li ZG
    Bioorg Med Chem Lett; 2018 Mar; 28(5):974-978. PubMed ID: 29429832
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Emerging and Re-emerging Warheads for Targeted Covalent Inhibitors: An Update.
    Hillebrand L; Liang XJ; Serafim RAM; Gehringer M
    J Med Chem; 2024 May; 67(10):7668-7758. PubMed ID: 38711345
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Substituted aminobenzimidazole pyrimidines as cyclin-dependent kinase inhibitors.
    Verma S; Nagarathnam D; Shao J; Zhang L; Zhao J; Wang Y; Li T; Mull E; Enyedy I; Wang C; Zhu Q; Altieri M; Jordan J; Dang TT; Reddy S
    Bioorg Med Chem Lett; 2005 Apr; 15(8):1973-7. PubMed ID: 15808450
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modeling covalent-modifier drugs.
    Awoonor-Williams E; Walsh AG; Rowley CN
    Biochim Biophys Acta Proteins Proteom; 2017 Nov; 1865(11 Pt B):1664-1675. PubMed ID: 28528876
    [TBL] [Abstract][Full Text] [Related]  

  • 34. 5-Substituted 3-isopropyl-7-[4-(2-pyridyl)benzyl]amino-1(2)H-pyrazolo[4,3-d]pyrimidines with anti-proliferative activity as potent and selective inhibitors of cyclin-dependent kinases.
    Vymětalová L; Havlíček L; Šturc A; Skrášková Z; Jorda R; Pospíšil T; Strnad M; Kryštof V
    Eur J Med Chem; 2016 Mar; 110():291-301. PubMed ID: 26851505
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Discovery of Covalent CDK14 Inhibitors with Pan-TAIRE Family Specificity.
    Ferguson FM; Doctor ZM; Ficarro SB; Browne CM; Marto JA; Johnson JL; Yaron TM; Cantley LC; Kim ND; Sim T; Berberich MJ; Kalocsay M; Sorger PK; Gray NS
    Cell Chem Biol; 2019 Jun; 26(6):804-817.e12. PubMed ID: 30930164
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Cysteinome of Protein Kinases as a Target in Drug Development.
    Chaikuad A; Koch P; Laufer SA; Knapp S
    Angew Chem Int Ed Engl; 2018 Apr; 57(16):4372-4385. PubMed ID: 28994500
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Covalent docking of large libraries for the discovery of chemical probes.
    London N; Miller RM; Krishnan S; Uchida K; Irwin JJ; Eidam O; Gibold L; Cimermančič P; Bonnet R; Shoichet BK; Taunton J
    Nat Chem Biol; 2014 Dec; 10(12):1066-72. PubMed ID: 25344815
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Advances on cyclin-dependent kinases (CDKs) as novel targets for antiviral drugs.
    Schang LM
    Curr Drug Targets Infect Disord; 2005 Mar; 5(1):29-37. PubMed ID: 15777196
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Current Status in the Discovery of Covalent Janus Kinase 3 (JAK3) Inhibitors.
    Dai J; Yang L; Addison G
    Mini Rev Med Chem; 2019; 19(18):1531-1543. PubMed ID: 31288716
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Chemoproteomic Strategy for Direct and Proteome-Wide Covalent Inhibitor Target-Site Identification.
    Browne CM; Jiang B; Ficarro SB; Doctor ZM; Johnson JL; Card JD; Sivakumaren SC; Alexander WM; Yaron TM; Murphy CJ; Kwiatkowski NP; Zhang T; Cantley LC; Gray NS; Marto JA
    J Am Chem Soc; 2019 Jan; 141(1):191-203. PubMed ID: 30518210
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.