These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 31631196)

  • 1. A Bayesian approach to NMR crystal structure determination.
    Engel EA; Anelli A; Hofstetter A; Paruzzo F; Emsley L; Ceriotti M
    Phys Chem Chem Phys; 2019 Nov; 21(42):23385-23400. PubMed ID: 31631196
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemical shifts in molecular solids by machine learning.
    Paruzzo FM; Hofstetter A; Musil F; De S; Ceriotti M; Emsley L
    Nat Commun; 2018 Oct; 9(1):4501. PubMed ID: 30374021
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Machine Learning Model of Chemical Shifts for Chemically and Structurally Diverse Molecular Solids.
    Cordova M; Engel EA; Stefaniuk A; Paruzzo F; Hofstetter A; Ceriotti M; Emsley L
    J Phys Chem C Nanomater Interfaces; 2022 Oct; 126(39):16710-16720. PubMed ID: 36237276
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting Molecular Crystal Properties from First Principles: Finite-Temperature Thermochemistry to NMR Crystallography.
    Beran GJ; Hartman JD; Heit YN
    Acc Chem Res; 2016 Nov; 49(11):2501-2508. PubMed ID: 27754668
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Powder crystallography of pharmaceutical materials by combined crystal structure prediction and solid-state 1H NMR spectroscopy.
    Baias M; Widdifield CM; Dumez JN; Thompson HP; Cooper TG; Salager E; Bassil S; Stein RS; Lesage A; Day GM; Emsley L
    Phys Chem Chem Phys; 2013 Jun; 15(21):8069-80. PubMed ID: 23503809
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of structure and properties of molecular crystals from first principles.
    Szalewicz K
    Acc Chem Res; 2014 Nov; 47(11):3266-74. PubMed ID: 25354310
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-time prediction of
    Guan Y; Shree Sowndarya SV; Gallegos LC; St John PC; Paton RS
    Chem Sci; 2021 Sep; 12(36):12012-12026. PubMed ID: 34667567
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Importance of Nuclear Quantum Effects for NMR Crystallography.
    Engel EA; Kapil V; Ceriotti M
    J Phys Chem Lett; 2021 Aug; 12(32):7701-7707. PubMed ID: 34355903
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Does Z' equal 1 or 2? Enhanced powder NMR crystallography verification of a disordered room temperature crystal structure of a p38 inhibitor for chronic obstructive pulmonary disease.
    Widdifield CM; Nilsson Lill SO; Broo A; Lindkvist M; Pettersen A; Svensk Ankarberg A; Aldred P; Schantz S; Emsley L
    Phys Chem Chem Phys; 2017 Jun; 19(25):16650-16661. PubMed ID: 28621371
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemical Shifts of the Carbohydrate Binding Domain of Galectin-3 from Magic Angle Spinning NMR and Hybrid Quantum Mechanics/Molecular Mechanics Calculations.
    Kraus J; Gupta R; Yehl J; Lu M; Case DA; Gronenborn AM; Akke M; Polenova T
    J Phys Chem B; 2018 Mar; 122(11):2931-2939. PubMed ID: 29498857
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantifying weak hydrogen bonding in uracil and 4-cyano-4'-ethynylbiphenyl: a combined computational and experimental investigation of NMR chemical shifts in the solid state.
    Uldry AC; Griffin JM; Yates JR; Pérez-Torralba M; María MD; Webber AL; Beaumont ML; Samoson A; Claramunt RM; Pickard CJ; Brown SP
    J Am Chem Soc; 2008 Jan; 130(3):945-54. PubMed ID: 18166050
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Powder crystallography by combined crystal structure prediction and high-resolution 1H solid-state NMR spectroscopy.
    Salager E; Day GM; Stein RS; Pickard CJ; Elena B; Emsley L
    J Am Chem Soc; 2010 Mar; 132(8):2564-6. PubMed ID: 20136091
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid Structure Determination of Molecular Solids Using Chemical Shifts Directed by Unambiguous Prior Constraints.
    Hofstetter A; Balodis M; Paruzzo FM; Widdifield CM; Stevanato G; Pinon AC; Bygrave PJ; Day GM; Emsley L
    J Am Chem Soc; 2019 Oct; 141(42):16624-16634. PubMed ID: 31117663
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving Predicted Nuclear Magnetic Resonance Chemical Shifts Using the Quasi-Harmonic Approximation.
    McKinley JL; Beran GJO
    J Chem Theory Comput; 2019 Oct; 15(10):5259-5274. PubMed ID: 31442040
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving the quality of NMR and crystallographic protein structures by means of a conformational database potential derived from structure databases.
    Kuszewski J; Gronenborn AM; Clore GM
    Protein Sci; 1996 Jun; 5(6):1067-80. PubMed ID: 8762138
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural determination of complex natural products by quantum mechanical calculations of (13)C NMR chemical shifts: development of a parameterized protocol for terpenes.
    de Albuquerque AC; Ribeiro DJ; de Amorim MB
    J Mol Model; 2016 Aug; 22(8):183. PubMed ID: 27424297
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fragment-Based Electronic Structure Approach for Computing Nuclear Magnetic Resonance Chemical Shifts in Molecular Crystals.
    Hartman JD; Beran GJ
    J Chem Theory Comput; 2014 Nov; 10(11):4862-72. PubMed ID: 26584373
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analyzing Discrepancies in Chemical-Shift Predictions of Solid Pyridinium Fumarates.
    Dračínský M
    Molecules; 2021 Jun; 26(13):. PubMed ID: 34202841
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A method for the calculation of protein alpha-CH chemical shifts.
    Williamson MP; Asakura T; Nakamura E; Demura M
    J Biomol NMR; 1992 Jan; 2(1):83-98. PubMed ID: 1330129
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational studies of 13C NMR chemical shifts of saccharides.
    Taubert S; Konschin H; Sundholm D
    Phys Chem Chem Phys; 2005 Jul; 7(13):2561-9. PubMed ID: 16189565
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.