These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Bedform characteristics and biofilm community development interact to modify hyporheic exchange. Cook S; Price O; King A; Finnegan C; van Egmond R; Schäfer H; Pearson JM; Abolfathi S; Bending GD Sci Total Environ; 2020 Dec; 749():141397. PubMed ID: 32841855 [TBL] [Abstract][Full Text] [Related]
4. Transformation of organic micropollutants along hyporheic flow in bedforms of river-simulating flumes. Jaeger A; Posselt M; Schaper JL; Betterle A; Rutere C; Coll C; Mechelke J; Raza M; Meinikmann K; Portmann A; Blaen PJ; Horn MA; Krause S; Lewandowski J Sci Rep; 2021 Jun; 11(1):13034. PubMed ID: 34158517 [TBL] [Abstract][Full Text] [Related]
5. Exploring co-occurrence patterns between organic micropollutants and bacterial community structure in a mixed-use watershed. Gao H; LaVergne JM; Carpenter CMG; Desai R; Zhang X; Gray K; Helbling DE; Wells GF Environ Sci Process Impacts; 2019 May; 21(5):867-880. PubMed ID: 30957808 [TBL] [Abstract][Full Text] [Related]
6. Colonization Habitat Controls Biomass, Composition, and Metabolic Activity of Attached Microbial Communities in the Columbia River Hyporheic Corridor. Stern N; Ginder-Vogel M; Stegen JC; Arntzen E; Kennedy DW; Larget BR; Roden EE Appl Environ Microbiol; 2017 Aug; 83(16):. PubMed ID: 28600318 [TBL] [Abstract][Full Text] [Related]
7. The fate of polar trace organic compounds in the hyporheic zone. Schaper JL; Seher W; Nützmann G; Putschew A; Jekel M; Lewandowski J Water Res; 2018 Sep; 140():158-166. PubMed ID: 29705619 [TBL] [Abstract][Full Text] [Related]
8. Temperature dependent redox zonation and attenuation of wastewater-derived organic micropollutants in the hyporheic zone. Burke V; Greskowiak J; Asmuß T; Bremermann R; Taute T; Massmann G Sci Total Environ; 2014 Jun; 482-483():53-61. PubMed ID: 24642095 [TBL] [Abstract][Full Text] [Related]
9. Degradation potential of MCPA, metolachlor and propiconazole in the hyporheic sediments of an agriculturally impacted river. Bech TB; Stehrer T; Jakobsen R; Badawi N; Schostag MD; Hinsby K; Aamand J; Hellal J Sci Total Environ; 2022 Aug; 834():155226. PubMed ID: 35461929 [TBL] [Abstract][Full Text] [Related]
10. Bacterial community dynamics in the hyporheic zone of an intermittent stream. Febria CM; Beddoes P; Fulthorpe RR; Williams DD ISME J; 2012 May; 6(5):1078-88. PubMed ID: 22158391 [TBL] [Abstract][Full Text] [Related]
11. Association between Aquatic Micropollutant Dissipation and River Sediment Bacterial Communities. Coll C; Bier R; Li Z; Langenheder S; Gorokhova E; Sobek A Environ Sci Technol; 2020 Nov; 54(22):14380-14392. PubMed ID: 33104348 [TBL] [Abstract][Full Text] [Related]
12. Persistence and migration of tetracycline, sulfonamide, fluoroquinolone, and macrolide antibiotics in streams using a simulated hydrodynamic system. Liu X; Lv K; Deng C; Yu Z; Shi J; Johnson AC Environ Pollut; 2019 Sep; 252(Pt B):1532-1538. PubMed ID: 31277022 [TBL] [Abstract][Full Text] [Related]
13. Isotopic exchangeability as a measure of the available fraction of the human pharmaceutical carbamazepine in river sediment. Williams M; Kookana R Sci Total Environ; 2010 Aug; 408(17):3689-95. PubMed ID: 20537370 [TBL] [Abstract][Full Text] [Related]
14. Flume experiments to investigate the environmental fate of pharmaceuticals and their transformation products in streams. Li Z; Sobek A; Radke M Environ Sci Technol; 2015 May; 49(10):6009-17. PubMed ID: 25901906 [TBL] [Abstract][Full Text] [Related]
15. Fate of organic micropollutants in the hyporheic zone of a eutrophic lowland stream: results of a preliminary field study. Lewandowski J; Putschew A; Schwesig D; Neumann C; Radke M Sci Total Environ; 2011 Apr; 409(10):1824-35. PubMed ID: 21349571 [TBL] [Abstract][Full Text] [Related]
16. Impact of a wastewater treatment plant on microbial community composition and function in a hyporheic zone of a eutrophic river. Atashgahi S; Aydin R; Dimitrov MR; Sipkema D; Hamonts K; Lahti L; Maphosa F; Kruse T; Saccenti E; Springael D; Dejonghe W; Smidt H Sci Rep; 2015 Nov; 5():17284. PubMed ID: 26607034 [TBL] [Abstract][Full Text] [Related]
17. Habitat heterogeneity and associated microbial community structure in a small-scale floodplain hyporheic flow path. Lowell JL; Gordon N; Engstrom D; Stanford JA; Holben WE; Gannon JE Microb Ecol; 2009 Oct; 58(3):611-20. PubMed ID: 19462196 [TBL] [Abstract][Full Text] [Related]
18. Lessons learned from water/sediment-testing of pharmaceuticals. Radke M; Maier MP Water Res; 2014 May; 55():63-73. PubMed ID: 24602861 [TBL] [Abstract][Full Text] [Related]
19. Internal loading of phosphate in rivers reduces at higher flow velocity and is reduced by iron rich sand application: an experimental study in flumes. Van Dael T; Xia L; Van Dijck K; Potemans S; Smolders E Water Res; 2021 Jun; 198():117160. PubMed ID: 33962242 [TBL] [Abstract][Full Text] [Related]
20. Response of bacterial community compositions to different sources of pollutants in sediments of a tributary of Taihu Lake, China. Wang J; Li Y; Wang P; Niu L; Zhang W; Wang C Environ Sci Pollut Res Int; 2016 Jul; 23(14):13886-94. PubMed ID: 27040536 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]