These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 31631204)
21. Metagenomic analysis of the bacterial communities and their functional profiles in water and sediments of the Apies River, South Africa, as a function of land use. Abia ALK; Alisoltani A; Keshri J; Ubomba-Jaswa E Sci Total Environ; 2018 Mar; 616-617():326-334. PubMed ID: 29126050 [TBL] [Abstract][Full Text] [Related]
22. Passive sampling of organic contaminants across the water-sediment interface of an urban stream. Mechelke J; Vermeirssen ELM; Hollender J Water Res; 2019 Nov; 165():114966. PubMed ID: 31437634 [TBL] [Abstract][Full Text] [Related]
23. Fate of Trace Organic Compounds in the Hyporheic Zone: Influence of Retardation, the Benthic Biolayer, and Organic Carbon. Schaper JL; Posselt M; Bouchez C; Jaeger A; Nuetzmann G; Putschew A; Singer G; Lewandowski J Environ Sci Technol; 2019 Apr; 53(8):4224-4234. PubMed ID: 30905154 [TBL] [Abstract][Full Text] [Related]
24. Biodegradation of tetrachlorobisphenol-A in river sediment and the microbial community changes. Yuan SY; Li HT; Huang HW; Chang BV J Environ Sci Health B; 2010 Jul; 45(5):360-5. PubMed ID: 20512725 [TBL] [Abstract][Full Text] [Related]
25. Impact of the particulate matter from wastewater discharge on the abundance of antibiotic resistance genes and facultative pathogenic bacteria in downstream river sediments. Brown PC; Borowska E; Schwartz T; Horn H Sci Total Environ; 2019 Feb; 649():1171-1178. PubMed ID: 30308888 [TBL] [Abstract][Full Text] [Related]
26. Biodegradation of acidic pharmaceuticals in bed sediments: insight from a laboratory experiment. Kunkel U; Radke M Environ Sci Technol; 2008 Oct; 42(19):7273-9. PubMed ID: 18939558 [TBL] [Abstract][Full Text] [Related]
27. [Potential Risk and Distribution Characteristics of PPCPs in Surface Water and Sediment from Rivers and Lakes in Beijing, China]. Zhang PW; Zhou HD; Zhao GF; Li K; Zhao XH; Liu QN; Ren M; Zhao DD; Li DJ Huan Jing Ke Xue; 2017 May; 38(5):1852-1862. PubMed ID: 29965089 [TBL] [Abstract][Full Text] [Related]
28. Carbon limitation may override fine-sediment induced alterations of hyporheic nitrogen and phosphorus dynamics. Sunjidmaa N; Mendoza-Lera C; Hille S; Schmidt C; Borchardt D; Graeber D Sci Total Environ; 2022 Sep; 837():155689. PubMed ID: 35526618 [TBL] [Abstract][Full Text] [Related]
29. Effects of hydrodynamic disturbances on biodegradation of tetrabromobisphenol A in water-sediment systems. Cheng H; Wang Y; Zhu T; Wang L; Xie Z; Hua Z; Jiang X Environ Sci Pollut Res Int; 2019 Oct; 26(30):31392-31400. PubMed ID: 31471855 [TBL] [Abstract][Full Text] [Related]
30. Use of slow filtration columns to assess oxygen respiration, consumption of dissolved organic carbon, nitrogen transformations, and microbial parameters in hyporheic sediments. Mermillod-Blondin F; Mauclaire L; Montuelle B Water Res; 2005 May; 39(9):1687-98. PubMed ID: 15899267 [TBL] [Abstract][Full Text] [Related]
31. Hydrograph-based approach to modeling bacterial fate and transport in rivers. Ghimire B; Deng Z Water Res; 2013 Mar; 47(3):1329-43. PubMed ID: 23270670 [TBL] [Abstract][Full Text] [Related]
32. Wastewater micropollutants as tracers of sewage contamination: analysis of combined sewer overflow and stream sediments. Hajj-Mohamad M; Aboulfadl K; Darwano H; Madoux-Humery AS; Guérineau H; Sauvé S; Prévost M; Dorner S Environ Sci Process Impacts; 2014; 16(10):2442-50. PubMed ID: 25189851 [TBL] [Abstract][Full Text] [Related]
33. Wastewater treatment effluent reduces the abundance and diversity of benthic bacterial communities in urban and suburban rivers. Drury B; Rosi-Marshall E; Kelly JJ Appl Environ Microbiol; 2013 Mar; 79(6):1897-905. PubMed ID: 23315724 [TBL] [Abstract][Full Text] [Related]
34. PAH desorption from sediments with different contents of organic carbon from wastewater receiving rivers. Qi W; Liu H; Qu J; Ren H; Xu W Environ Sci Pollut Res Int; 2011 Mar; 18(3):346-54. PubMed ID: 20680698 [TBL] [Abstract][Full Text] [Related]
35. Combined effects of micropollutants and their degradation on prokaryotic communities at the sediment-water interface. Borreca A; Vuilleumier S; Imfeld G Sci Rep; 2024 Jul; 14(1):16840. PubMed ID: 39039186 [TBL] [Abstract][Full Text] [Related]
36. Influence of Wastewater Discharge on the Metabolic Potential of the Microbial Community in River Sediments. Li D; Sharp JO; Drewes JE Microb Ecol; 2016 Jan; 71(1):78-86. PubMed ID: 26403720 [TBL] [Abstract][Full Text] [Related]
37. Sequencing Insights into Microbial Communities in the Water and Sediments of Fenghe River, China. Lu S; Sun Y; Zhao X; Wang L; Ding A; Zhao X Arch Environ Contam Toxicol; 2016 Jul; 71(1):122-32. PubMed ID: 27053089 [TBL] [Abstract][Full Text] [Related]
38. Effects of farmhouse hotel and paper mill effluents on bacterial community structures in sediment and surface water of Nanxi River, China. Lu XM; Lu PZ Microb Ecol; 2014 Nov; 68(4):773-84. PubMed ID: 25008983 [TBL] [Abstract][Full Text] [Related]
39. Sensitivity of Simulated Hyporheic Exchange to River Bathymetry: The Steinlach River Test Site. Chow R; Wu H; Bennett JP; Dugge J; Wöhling T; Nowak W Ground Water; 2019 May; 57(3):378-391. PubMed ID: 30069873 [TBL] [Abstract][Full Text] [Related]
40. Characterizing the capacity of hyporheic sediments to attenuate groundwater nitrate loads by adsorption. Meghdadi A Water Res; 2018 Sep; 140():364-376. PubMed ID: 29751318 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]