These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 31631532)

  • 41. Proteomic Profiling and Functional Characterization of Multiple Post-Translational Modifications of Tubulin.
    Liu N; Xiong Y; Ren Y; Zhang L; He X; Wang X; Liu M; Li D; Shui W; Zhou J
    J Proteome Res; 2015 Aug; 14(8):3292-304. PubMed ID: 26165356
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Modification-specific proteomics: characterization of post-translational modifications by mass spectrometry.
    Jensen ON
    Curr Opin Chem Biol; 2004 Feb; 8(1):33-41. PubMed ID: 15036154
    [TBL] [Abstract][Full Text] [Related]  

  • 43. HPLC enrichment/isolation of proteins for post-translational modification studies from complex mixtures.
    Tóth E; Ozohanics O; Bobály B; Gömöry Á; Jekő A; Drahos L; Vékey K
    J Pharm Biomed Anal; 2014 Sep; 98():393-400. PubMed ID: 25005889
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Analysis of Cysteine Redox Post-Translational Modifications in Cell Biology and Drug Pharmacology.
    Wani R; Murray BW
    Methods Mol Biol; 2017; 1558():191-212. PubMed ID: 28150239
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Thiol redox proteomics seen with fluorescent eyes: the detection of cysteine oxidative modifications by fluorescence derivatization and 2-DE.
    Izquierdo-Álvarez A; Martínez-Ruiz A
    J Proteomics; 2011 Dec; 75(2):329-38. PubMed ID: 21983555
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Numerous posttranslational modifications provide opportunities for the intricate regulation of metabolic enzymes at multiple levels.
    Huber SC; Hardin SC
    Curr Opin Plant Biol; 2004 Jun; 7(3):318-22. PubMed ID: 15134753
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Chemical Probes for Redox Signaling and Oxidative Stress.
    Abo M; Weerapana E
    Antioxid Redox Signal; 2019 Apr; 30(10):1369-1386. PubMed ID: 29132214
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Post-translational modifications of seminal proteins and their importance in male fertility potential.
    Maciel VL; Tamashiro LK; Bertolla RP
    Expert Rev Proteomics; 2019; 16(11-12):941-950. PubMed ID: 31726898
    [No Abstract]   [Full Text] [Related]  

  • 49. Mapping Post-Translational Modifications of de Novo Purine Biosynthetic Enzymes: Implications for Pathway Regulation.
    Liu C; Knudsen GM; Pedley AM; He J; Johnson JL; Yaron TM; Cantley LC; Benkovic SJ
    J Proteome Res; 2019 May; 18(5):2078-2087. PubMed ID: 30964683
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Protein lysine acetylation in bacteria: Current state of the art.
    Ouidir T; Kentache T; Hardouin J
    Proteomics; 2016 Jan; 16(2):301-9. PubMed ID: 26390373
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Urinary proteins with post-translational modifications.
    Liu L; Liu X
    Adv Exp Med Biol; 2015; 845():59-65. PubMed ID: 25355569
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Features and regulation of non-enzymatic post-translational modifications.
    Harmel R; Fiedler D
    Nat Chem Biol; 2018 Feb; 14(3):244-252. PubMed ID: 29443975
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The Deep Thioredoxome in Chlamydomonas reinhardtii: New Insights into Redox Regulation.
    Pérez-Pérez ME; Mauriès A; Maes A; Tourasse NJ; Hamon M; Lemaire SD; Marchand CH
    Mol Plant; 2017 Aug; 10(8):1107-1125. PubMed ID: 28739495
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Proteomics of post-translational modifications of mammalian spermatozoa.
    Baker MA
    Cell Tissue Res; 2016 Jan; 363(1):279-287. PubMed ID: 26239910
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mapping protein post-translational modifications with mass spectrometry.
    Witze ES; Old WM; Resing KA; Ahn NG
    Nat Methods; 2007 Oct; 4(10):798-806. PubMed ID: 17901869
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Proteomics of Pseudomonas aeruginosa: the increasing role of post-translational modifications.
    Gaviard C; Jouenne T; Hardouin J
    Expert Rev Proteomics; 2018 Sep; 15(9):757-772. PubMed ID: 30146909
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [Structural biology of post-translational modifications of proteins].
    Kato K
    Yakugaku Zasshi; 2012; 132(5):563-73. PubMed ID: 22687692
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Protein Lipidation Types: Current Strategies for Enrichment and Characterization.
    Wang R; Chen YQ
    Int J Mol Sci; 2022 Feb; 23(4):. PubMed ID: 35216483
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Strategies for proteomic analysis of non-enzymatically glycated proteins.
    Priego Capote F; Sanchez JC
    Mass Spectrom Rev; 2009; 28(1):135-46. PubMed ID: 18949816
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Platforms for enrichment of phosphorylated proteins and peptides in proteomics.
    Batalha IL; Lowe CR; Roque AC
    Trends Biotechnol; 2012 Feb; 30(2):100-10. PubMed ID: 21944550
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.