These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 31631663)

  • 1. Approximating Periodic Potential Energy Surfaces with Sparse Trigonometric Interpolation.
    Morrow Z; Liu C; Kelley CT; Jakubikova E
    J Phys Chem B; 2019 Nov; 123(45):9677-9684. PubMed ID: 31631663
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient Approximation of Potential Energy Surfaces with Mixed-Basis Interpolation.
    Morrow Z; Kwon HY; Kelley CT; Jakubikova E
    J Chem Theory Comput; 2021 Sep; 17(9):5673-5683. PubMed ID: 34351740
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interpolation Methods for Molecular Potential Energy Surface Construction.
    Kwon HY; Morrow Z; Kelley CT; Jakubikova E
    J Phys Chem A; 2021 Nov; 125(45):9725-9735. PubMed ID: 34730973
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Global triplet potential energy surfaces for the N2(X(1)Σ) + O((3)P) → NO(X(2)Π) + N((4)S) reaction.
    Lin W; Varga Z; Song G; Paukku Y; Truhlar DG
    J Chem Phys; 2016 Jan; 144(2):024309. PubMed ID: 26772573
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gradient-based multiconfiguration Shepard interpolation for generating potential energy surfaces for polyatomic reactions.
    Tishchenko O; Truhlar DG
    J Chem Phys; 2010 Feb; 132(8):084109. PubMed ID: 20192292
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular potential energy surfaces constructed from interpolation of systematic fragment surfaces.
    Collins MA
    J Chem Phys; 2007 Jul; 127(2):024104. PubMed ID: 17640116
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automating the Development of High-Dimensional Reactive Potential Energy Surfaces with the robosurfer Program System.
    Győri T; Czakó G
    J Chem Theory Comput; 2020 Jan; 16(1):51-66. PubMed ID: 31851508
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficiently Transplanting Potential Energy Interpolation Database between Two Systems: Bacteriochlorophyll Case with FMO and LH2 Complexes.
    Cho KH; Chung S; Rhee YM
    J Chem Inf Model; 2019 Oct; 59(10):4228-4238. PubMed ID: 31487163
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular Dynamics Simulations on Relaxed Reduced-Dimensional Potential Energy Surfaces.
    Liu C; Kelley CT; Jakubikova E
    J Phys Chem A; 2019 May; 123(21):4543-4554. PubMed ID: 31038956
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of the modified Shepard interpolation method to the determination of the potential energy surface for a molecule-surface reaction: H2 + Pt(111).
    Crespos C; Collins MA; Pijper E; Kroes GJ
    J Chem Phys; 2004 Feb; 120(5):2392-404. PubMed ID: 15268379
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New results for the OH (nu = 0,j = 0) + CO (nu = 0,j = 0) --> H + CO2 reaction: Five- and full-dimensional quantum dynamical study on several potential energy surfaces.
    Valero R; McCormack DA; Kroes GJ
    J Chem Phys; 2004 Mar; 120(9):4263-72. PubMed ID: 15268595
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interpolation and Extrapolation of Global Potential Energy Surfaces for Polyatomic Systems by Gaussian Processes with Composite Kernels.
    Dai J; Krems RV
    J Chem Theory Comput; 2020 Mar; 16(3):1386-1395. PubMed ID: 31961675
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Full-dimensional ab initio potential energy surface and vibrational configuration interaction calculations for vinyl.
    Sharma AR; Braams BJ; Carter S; Shepler BC; Bowman JM
    J Chem Phys; 2009 May; 130(17):174301. PubMed ID: 19425770
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ab initio molecular dynamics of hydrogen dissociation on metal surfaces using neural networks and novelty sampling.
    Ludwig J; Vlachos DG
    J Chem Phys; 2007 Oct; 127(15):154716. PubMed ID: 17949200
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DFT/TDDFT exploration of the potential energy surfaces of the ground state and excited states of Fe2(S2C3H6)(CO)6: a simple functional model of the [FeFe] hydrogenase active site.
    Bertini L; Greco C; De Gioia L; Fantucci P
    J Phys Chem A; 2009 May; 113(19):5657-70. PubMed ID: 19378958
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development and Evaluation of Geometry Optimization Algorithms in Conjunction with ANI Potentials.
    Hao D; He X; Roitberg AE; Zhang S; Wang J
    J Chem Theory Comput; 2022 Feb; 18(2):978-991. PubMed ID: 35020396
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Full and fragmented permutationally invariant polynomial potential energy surfaces for trans and cis N-methyl acetamide and isomerization saddle points.
    Nandi A; Qu C; Bowman JM
    J Chem Phys; 2019 Aug; 151(8):084306. PubMed ID: 31470729
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quasiclassical trajectory calculations of the reaction C+C2H2-->l-C3H, c-C3H+H, C3+H2 using full-dimensional triplet and singlet potential energy surfaces.
    Park WK; Park J; Park SC; Braams BJ; Chen C; Bowman JM
    J Chem Phys; 2006 Aug; 125(8):081101. PubMed ID: 16964991
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reaction Path Following with Sparse Interpolation.
    Nance J; Jakubikova E; Kelley CT
    J Chem Theory Comput; 2014 Aug; 10(8):2942-9. PubMed ID: 26588269
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An accurate full-dimensional permutationally invariant potential energy surface for the interaction between H
    Liu Y; Li J
    Phys Chem Chem Phys; 2019 Nov; 21(43):24101-24111. PubMed ID: 31657386
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.