These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 31631905)

  • 21. Joint-constraint model for large-eddy simulation of helical turbulence.
    Yu C; Xiao Z; Shi Y; Chen S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):043021. PubMed ID: 24827346
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Direct Numerical Simulation and Theory of a Wall-Bounded Flow with Zero Skin Friction.
    Coleman GN; Pirozzoli S; Quadrio M; Spalart PR
    Flow Turbul Combust; 2017 Jul; 99(3-4):553-564. PubMed ID: 31832014
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization of pressure fluctuations within a controlled-diffusion blade boundary layer using the equilibrium wall-modelled LES.
    Boukharfane R; Parsani M; Bodart J
    Sci Rep; 2020 Jul; 10(1):12735. PubMed ID: 32728231
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Large eddy simulation of transitional flow in an idealized stenotic blood vessel: evaluation of subgrid scale models.
    Pal A; Anupindi K; Delorme Y; Ghaisas N; Shetty DA; Frankel SH
    J Biomech Eng; 2014 Jul; 136(7):0710091-8. PubMed ID: 24801556
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Adverse-Pressure-Gradient Effects on Turbulent Boundary Layers: Statistics and Flow-Field Organization.
    Sanmiguel Vila C; Örlü R; Vinuesa R; Schlatter P; Ianiro A; Discetti S
    Flow Turbul Combust; 2017; 99(3):589-612. PubMed ID: 30069158
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Velocity transformation for compressible wall-bounded turbulent flows with and without heat transfer.
    Griffin KP; Fu L; Moin P
    Proc Natl Acad Sci U S A; 2021 Aug; 118(34):. PubMed ID: 34413197
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characteristic length scale of the intermediate structure in zero-pressure-gradient boundary layer flow.
    Barenblatt GI; Chorin AJ; Prostokishin VM
    Proc Natl Acad Sci U S A; 2000 Apr; 97(8):3799-802. PubMed ID: 10760253
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Consistent lattice Boltzmann modeling of low-speed isothermal flows at finite Knudsen numbers in slip-flow regime. II. Application to curved boundaries.
    Silva G
    Phys Rev E; 2018 Aug; 98(2-1):023302. PubMed ID: 30253480
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Unified slip boundary condition for fluid flows.
    Thalakkottor JJ; Mohseni K
    Phys Rev E; 2016 Aug; 94(2-1):023113. PubMed ID: 27627398
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Numerical study of turbulent separation bubbles with varying pressure gradient and Reynolds number.
    Coleman GN; Rumsey CL; Spalart PR
    J Fluid Mech; 2018 May; 847():28-70. PubMed ID: 31831915
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Validation of a closing procedure for fourth-order RANS turbulence models with DNS data in an incompressible zero-pressure-gradient turbulent boundary layer.
    Poroseva SV; Kaiser BE; Sillero JA; Murman SM
    Int J Heat Fluid Flow; 2015 Dec; 56():71-79. PubMed ID: 30220749
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An LES Turbulent Inflow Generator using A Recycling and Rescaling Method.
    Xiao F; Dianat M; McGuirk JJ
    Flow Turbul Combust; 2017; 98(3):663-695. PubMed ID: 30174549
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Numerical study on the influence of wall temperature gradient on aerodynamic characteristics of low aspect ratio flying wing configuration.
    Lin P; Liu X; Xiong N; Wang X; Shang M; Liu G; Tao Y
    Sci Rep; 2021 Aug; 11(1):16295. PubMed ID: 34381068
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Assessment of stretched vortex subgrid-scale models for LES of incompressible inhomogeneous turbulent flow.
    Shetty DA; Frankel SH
    Int J Numer Methods Fluids; 2013 Sep; 73(2):. PubMed ID: 24187423
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modelling turbulent boundary layer flow over fractal-like multiscale terrain using large-eddy simulations and analytical tools.
    Yang XI; Meneveau C
    Philos Trans A Math Phys Eng Sci; 2017 Apr; 375(2091):. PubMed ID: 28265022
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Onsager theory of wall-bounded turbulence and Taylor's momentum anomaly.
    Eyink GL; Kumar S; Quan H
    Philos Trans A Math Phys Eng Sci; 2022 Mar; 380(2218):20210079. PubMed ID: 35034493
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modern discontinuous Galerkin methods for the simulation of transitional and turbulent flows in biomedical engineering: A comprehensive LES study of the FDA benchmark nozzle model.
    Fehn N; Wall WA; Kronbichler M
    Int J Numer Method Biomed Eng; 2019 Dec; 35(12):e3228. PubMed ID: 31232525
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Corrected second-order slip boundary condition for fluid flows in nanochannels.
    Zhang H; Zhang Z; Zheng Y; Ye H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jun; 81(6 Pt 2):066303. PubMed ID: 20866518
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identity of attached eddies in turbulent channel flows with bidimensional empirical mode decomposition.
    Cheng C; Li W; Lozano-Durán A; Liu H
    J Fluid Mech; 2019 Jul; 870():1037-1071. PubMed ID: 31631907
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Large Eddy Simulation of FDA's Idealized Medical Device.
    Delorme YT; Anupindi K; Frankel SH
    Cardiovasc Eng Technol; 2013 Dec; 4(4):. PubMed ID: 24187599
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.