BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 31631919)

  • 1. OXYGEN ISOTOPIC COMPOSITION OF A COMETARY ENSTATITE RIBBON: EVIDENCE FOR CONDENSATION FROM
    Ogliore RC; Lewis JB; Utt KL; Nagashima K; Krot AN; Joswiak DJ; Brownlee DE
    Proc Lunar Planet Sci; 2018; 49th():. PubMed ID: 31631919
    [No Abstract]   [Full Text] [Related]  

  • 2. Oxygen isotopic composition of an enstatite ribbon of probable cometary origin.
    Ogliore RC; Brownlee DE; Nagashima K; Joswiak DJ; Lewis JB; Krot AN; Utt KL; Huss GR
    Meteorit Planet Sci; 2020 Jun; 55(6):1371-1381. PubMed ID: 32848353
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Condensate refractory inclusions from the CO3.00 chondrite Dominion Range 08006: Petrography, mineral chemistry, and isotopic compositions.
    Simon SB; Krot AN; Nagashima K; Kööp L; Davis AM
    Geochim Cosmochim Acta; 2019 Feb; 246():109-122. PubMed ID: 30846886
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The determination of ice composition with instruments on cometary landers.
    Boynton WV; D'Uston LC; Young DT; Lunine JI; Waite JH; Bailey SH; Berthelier JJ; Bertaux JL; Borrel V; Burke MF; Cohen BA; McComas DH; Nordholt JE; Evans LG; Trombka JI
    Acta Astronaut; 1997 May; 40(9):663-74. PubMed ID: 11540784
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isotopic analysis of cometary organic matter.
    Kerridge JF
    Space Sci Rev; 1991; 56():177-84. PubMed ID: 11538498
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isotopic evidence for primordial molecular cloud material in metal-rich carbonaceous chondrites.
    Van Kooten EM; Wielandt D; Schiller M; Nagashima K; Thomen A; Larsen KK; Olsen MB; Nordlund Å; Krot AN; Bizzarro M
    Proc Natl Acad Sci U S A; 2016 Feb; 113(8):2011-6. PubMed ID: 26858438
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ruthenium isotopic evidence for an inner Solar System origin of the late veneer.
    Fischer-Gödde M; Kleine T
    Nature; 2017 Jan; 541(7638):525-527. PubMed ID: 28128236
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Primitive Solar System materials and Earth share a common initial (142)Nd abundance.
    Bouvier A; Boyet M
    Nature; 2016 Sep; 537(7620):399-402. PubMed ID: 27629644
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Origin of crystalline silicates from Comet 81P/Wild 2: Combined study on their oxygen isotopes and mineral chemistry.
    Defouilloy C; Nakashima D; Joswiak DJ; Brownlee DE; Tenner TJ; Kita NT
    Earth Planet Sci Lett; 2017 May; 465():145-154. PubMed ID: 30705461
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The origin and fate of volatile elements on Earth revisited in light of noble gas data obtained from comet 67P/Churyumov-Gerasimenko.
    Bekaert DV; Broadley MW; Marty B
    Sci Rep; 2020 Apr; 10(1):5796. PubMed ID: 32242104
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cometary deuterium.
    Meier R; Owen TC
    Space Sci Rev; 1999; 1-2():33-43. PubMed ID: 11543290
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Earth's water may have been inherited from material similar to enstatite chondrite meteorites.
    Piani L; Marrocchi Y; Rigaudier T; Vacher LG; Thomassin D; Marty B
    Science; 2020 Aug; 369(6507):1110-1113. PubMed ID: 32855337
    [TBL] [Abstract][Full Text] [Related]  

  • 13. First evidence for silica condensation within the solar protoplanetary disk.
    Komatsu M; Fagan TJ; Krot AN; Nagashima K; Petaev MI; Kimura M; Yamaguchi A
    Proc Natl Acad Sci U S A; 2018 Jul; 115(29):7497-7502. PubMed ID: 29967181
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gas chromatography for in situ analysis of a cometary nucleus III. Multi-capillary column system for the cometary sampling and composition experiment of the Rosetta lander probe.
    Szopa C; Sternberg R; Coscia D; Raulin F; Vidal-Madjar C; Rosenbauer H
    J Chromatogr A; 2002 Apr; 953(1-2):165-73. PubMed ID: 12058930
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of the giant impactor Theia in lunar rocks.
    Herwartz D; Pack A; Friedrichs B; Bischoff A
    Science; 2014 Jun; 344(6188):1146-50. PubMed ID: 24904162
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The oxygen isotopic composition of the Sun inferred from captured solar wind.
    McKeegan KD; Kallio AP; Heber VS; Jarzebinski G; Mao PH; Coath CD; Kunihiro T; Wiens RC; Nordholt JE; Moses RW; Reisenfeld DB; Jurewicz AJ; Burnett DS
    Science; 2011 Jun; 332(6037):1528-32. PubMed ID: 21700868
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Q-gases in a late-forming refractory interplanetary dust particle: A link to comet Wild 2.
    Ogliore RC; Palma RL; Stodolna J; Nagashima K; Pepin RO; Schlutter DJ; Gainsforth Z; Westphal AJ; Huss GR
    Geochim Cosmochim Acta; 2020 Feb; 271():116-131. PubMed ID: 32214433
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The isotopic nature of the Earth's accreting material through time.
    Dauphas N
    Nature; 2017 Jan; 541(7638):521-524. PubMed ID: 28128239
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isotopic enhancements of 17O and 18O from solar wind particles in the lunar regolith.
    Ireland TR; Holden P; Norman MD; Clarke J
    Nature; 2006 Apr; 440(7085):776-8. PubMed ID: 16598252
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isotopic compositions of cometary matter returned by Stardust.
    McKeegan KD; Aléon J; Bradley J; Brownlee D; Busemann H; Butterworth A; Chaussidon M; Fallon S; Floss C; Gilmour J; Gounelle M; Graham G; Guan Y; Heck PR; Hoppe P; Hutcheon ID; Huth J; Ishii H; Ito M; Jacobsen SB; Kearsley A; Leshin LA; Liu MC; Lyon I; Marhas K; Marty B; Matrajt G; Meibom A; Messenger S; Mostefaoui S; Mukhopadhyay S; Nakamura-Messenger K; Nittler L; Palma R; Pepin RO; Papanastassiou DA; Robert F; Schlutter D; Snead CJ; Stadermann FJ; Stroud R; Tsou P; Westphal A; Young ED; Ziegler K; Zimmermann L; Zinner E
    Science; 2006 Dec; 314(5806):1724-8. PubMed ID: 17170292
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.