BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 31631940)

  • 1. Esterase-Cleavable 2D Assemblies of Magnetic Iron Oxide Nanocubes: Exploiting Enzymatic Polymer Disassembling To Improve Magnetic Hyperthermia Heat Losses.
    Avugadda SK; Materia ME; Nigmatullin R; Cabrera D; Marotta R; Cabada TF; Marcello E; Nitti S; Artés-Ibañez EJ; Basnett P; Wilhelm C; Teran FJ; Roy I; Pellegrino T
    Chem Mater; 2019 Aug; 31(15):5450-5463. PubMed ID: 31631940
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Confining Iron Oxide Nanocubes inside Submicrometric Cavities as a Key Strategy To Preserve Magnetic Heat Losses in an Intracellular Environment.
    Zyuzin MV; Cassani M; Barthel MJ; Gavilan H; Silvestri N; Escudero A; Scarpellini A; Lucchesi F; Teran FJ; Parak WJ; Pellegrino T
    ACS Appl Mater Interfaces; 2019 Nov; 11(45):41957-41971. PubMed ID: 31584801
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mesoscale assemblies of iron oxide nanocubes as heat mediators and image contrast agents.
    Materia ME; Guardia P; Sathya A; Leal MP; Marotta R; Di Corato R; Pellegrino T
    Langmuir; 2015 Jan; 31(2):808-16. PubMed ID: 25569814
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Uncovering the Magnetic Particle Imaging and Magnetic Resonance Imaging Features of Iron Oxide Nanocube Clusters.
    Avugadda SK; Wickramasinghe S; Niculaes D; Ju M; Lak A; Silvestri N; Nitti S; Roy I; Samia ACS; Pellegrino T
    Nanomaterials (Basel); 2020 Dec; 11(1):. PubMed ID: 33383768
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clickable Polymer Ligand-Functionalized Iron Oxide Nanocubes: A Promising Nanoplatform for 'Local Hot Spots' Magnetically Triggered Drug Release.
    Mai BT; Conteh JS; Gavilán H; Di Girolamo A; Pellegrino T
    ACS Appl Mater Interfaces; 2022 Nov; 14(43):48476-48488. PubMed ID: 36256634
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Asymmetric Assembling of Iron Oxide Nanocubes for Improving Magnetic Hyperthermia Performance.
    Niculaes D; Lak A; Anyfantis GC; Marras S; Laslett O; Avugadda SK; Cassani M; Serantes D; Hovorka O; Chantrell R; Pellegrino T
    ACS Nano; 2017 Dec; 11(12):12121-12133. PubMed ID: 29155560
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functionalization of strongly interacting magnetic nanocubes with (thermo)responsive coating and their application in hyperthermia and heat-triggered drug delivery.
    Kakwere H; Leal MP; Materia ME; Curcio A; Guardia P; Niculaes D; Marotta R; Falqui A; Pellegrino T
    ACS Appl Mater Interfaces; 2015 May; 7(19):10132-45. PubMed ID: 25840122
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Co-loading of doxorubicin and iron oxide nanocubes in polycaprolactone fibers for combining Magneto-Thermal and chemotherapeutic effects on cancer cells.
    Serio F; Silvestri N; Kumar Avugadda S; Nucci GEP; Nitti S; Onesto V; Catalano F; D'Amone E; Gigli G; Del Mercato LL; Pellegrino T
    J Colloid Interface Sci; 2022 Feb; 607(Pt 1):34-44. PubMed ID: 34492351
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermoresponsive Iron Oxide Nanocubes for an Effective Clinical Translation of Magnetic Hyperthermia and Heat-Mediated Chemotherapy.
    Mai BT; Balakrishnan PB; Barthel MJ; Piccardi F; Niculaes D; Marinaro F; Fernandes S; Curcio A; Kakwere H; Autret G; Cingolani R; Gazeau F; Pellegrino T
    ACS Appl Mater Interfaces; 2019 Feb; 11(6):5727-5739. PubMed ID: 30624889
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How size, shape and assembly of magnetic nanoparticles give rise to different hyperthermia scenarios.
    Gavilán H; Simeonidis K; Myrovali E; Mazarío E; Chubykalo-Fesenko O; Chantrell R; Balcells L; Angelakeris M; Morales MP; Serantes D
    Nanoscale; 2021 Oct; 13(37):15631-15646. PubMed ID: 34596185
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fe
    Lak A; Cassani M; Mai BT; Winckelmans N; Cabrera D; Sadrollahi E; Marras S; Remmer H; Fiorito S; Cremades-Jimeno L; Litterst FJ; Ludwig F; Manna L; Teran FJ; Bals S; Pellegrino T
    Nano Lett; 2018 Nov; 18(11):6856-6866. PubMed ID: 30336062
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Water-soluble iron oxide nanocubes with high values of specific absorption rate for cancer cell hyperthermia treatment.
    Guardia P; Di Corato R; Lartigue L; Wilhelm C; Espinosa A; Garcia-Hernandez M; Gazeau F; Manna L; Pellegrino T
    ACS Nano; 2012 Apr; 6(4):3080-91. PubMed ID: 22494015
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assembly of Iron Oxide Nanocubes for Enhanced Cancer Hyperthermia and Magnetic Resonance Imaging.
    Cho M; Cervadoro A; Ramirez MR; Stigliano C; Brazdeikis A; Colvin VL; Civera P; Key J; Decuzzi P
    Nanomaterials (Basel); 2017 Mar; 7(4):. PubMed ID: 28350351
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heat-generating iron oxide nanocubes: subtle "destructurators" of the tumoral microenvironment.
    Kolosnjaj-Tabi J; Di Corato R; Lartigue L; Marangon I; Guardia P; Silva AK; Luciani N; Clément O; Flaud P; Singh JV; Decuzzi P; Pellegrino T; Wilhelm C; Gazeau F
    ACS Nano; 2014 May; 8(5):4268-83. PubMed ID: 24738788
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magnetic nanoparticles and clusters for magnetic hyperthermia: optimizing their heat performance and developing combinatorial therapies to tackle cancer.
    Gavilán H; Avugadda SK; Fernández-Cabada T; Soni N; Cassani M; Mai BT; Chantrell R; Pellegrino T
    Chem Soc Rev; 2021 Oct; 50(20):11614-11667. PubMed ID: 34661212
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tailored Synthesis of Iron Oxide Nanocrystals for Formation of Cuboid Mesocrystals.
    Soran-Erdem Z; Sharma VK; Hernandez-Martinez PL; Demir HV
    ACS Omega; 2021 Aug; 6(31):20351-20360. PubMed ID: 34395983
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Colloidal polymer-coated Zn-doped iron oxide nanoparticles with high relaxivity and specific absorption rate for efficient magnetic resonance imaging and magnetic hyperthermia.
    Das P; Salvioni L; Malatesta M; Vurro F; Mannucci S; Gerosa M; Antonietta Rizzuto M; Tullio C; Degrassi A; Colombo M; Ferretti AM; Ponti A; Calderan L; Prosperi D
    J Colloid Interface Sci; 2020 Nov; 579():186-194. PubMed ID: 32590159
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Heat Dissipation Study of Iron Oxide Nanoparticles Embedded an Agar Phantom for the Purpose of Magnetic Fluid Hyperthermia.
    Yamamoto Y; Itoh T; Irieda T
    J Nanosci Nanotechnol; 2019 Sep; 19(9):5469-5475. PubMed ID: 30961698
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Duality of Iron Oxide Nanoparticles in Cancer Therapy: Amplification of Heating Efficiency by Magnetic Hyperthermia and Photothermal Bimodal Treatment.
    Espinosa A; Di Corato R; Kolosnjaj-Tabi J; Flaud P; Pellegrino T; Wilhelm C
    ACS Nano; 2016 Feb; 10(2):2436-46. PubMed ID: 26766814
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental and Modelling Analysis of the Hyperthermia Properties of Iron Oxide Nanocubes.
    Ferrero R; Barrera G; Celegato F; Vicentini M; Sözeri H; Yıldız N; Atila Dinçer C; Coïsson M; Manzin A; Tiberto P
    Nanomaterials (Basel); 2021 Aug; 11(9):. PubMed ID: 34578497
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.