These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
376 related articles for article (PubMed ID: 31632013)
1. Nano-Hydroxyapatite Coating Promotes Porous Calcium Phosphate Ceramic-Induced Osteogenesis Via BMP/Smad Signaling Pathway. Wang J; Wang M; Chen F; Wei Y; Chen X; Zhou Y; Yang X; Zhu X; Tu C; Zhang X Int J Nanomedicine; 2019; 14():7987-8000. PubMed ID: 31632013 [TBL] [Abstract][Full Text] [Related]
2. Effect of nano-hydroxyapatite coating on the osteoinductivity of porous biphasic calcium phosphate ceramics. Hu J; Zhou Y; Huang L; Liu J; Lu H BMC Musculoskelet Disord; 2014 Apr; 15():114. PubMed ID: 24690170 [TBL] [Abstract][Full Text] [Related]
3. Porous biphasic calcium phosphate ceramics coated with nano-hydroxyapatite and seeded with mesenchymal stem cells for reconstruction of radius segmental defects in rabbits. Hu J; Yang Z; Zhou Y; Liu Y; Li K; Lu H J Mater Sci Mater Med; 2015 Nov; 26(11):257. PubMed ID: 26449447 [TBL] [Abstract][Full Text] [Related]
4. Bone morphogenetic protein Smads signaling in mesenchymal stem cells affected by osteoinductive calcium phosphate ceramics. Tang Z; Wang Z; Qing F; Ni Y; Fan Y; Tan Y; Zhang X J Biomed Mater Res A; 2015 Mar; 103(3):1001-10. PubMed ID: 24889783 [TBL] [Abstract][Full Text] [Related]
5. Correlations between macrophage polarization and osteoinduction of porous calcium phosphate ceramics. Chen X; Wang M; Chen F; Wang J; Li X; Liang J; Fan Y; Xiao Y; Zhang X Acta Biomater; 2020 Feb; 103():318-332. PubMed ID: 31857257 [TBL] [Abstract][Full Text] [Related]
6. The promotion of bone regeneration by nanofibrous hydroxyapatite/chitosan scaffolds by effects on integrin-BMP/Smad signaling pathway in BMSCs. Liu H; Peng H; Wu Y; Zhang C; Cai Y; Xu G; Li Q; Chen X; Ji J; Zhang Y; OuYang HW Biomaterials; 2013 Jun; 34(18):4404-17. PubMed ID: 23515177 [TBL] [Abstract][Full Text] [Related]
7. Preparation of dexamethasone-loaded biphasic calcium phosphate nanoparticles/collagen porous composite scaffolds for bone tissue engineering. Chen Y; Kawazoe N; Chen G Acta Biomater; 2018 Feb; 67():341-353. PubMed ID: 29242161 [TBL] [Abstract][Full Text] [Related]
8. The role of the micro-pattern and nano-topography of hydroxyapatite bioceramics on stimulating osteogenic differentiation of mesenchymal stem cells. Zhao C; Wang X; Gao L; Jing L; Zhou Q; Chang J Acta Biomater; 2018 Jun; 73():509-521. PubMed ID: 29678674 [TBL] [Abstract][Full Text] [Related]
9. PEGylated poly(glycerol sebacate)-modified calcium phosphate scaffolds with desirable mechanical behavior and enhanced osteogenic capacity. Ma Y; Zhang W; Wang Z; Wang Z; Xie Q; Niu H; Guo H; Yuan Y; Liu C Acta Biomater; 2016 Oct; 44():110-24. PubMed ID: 27544808 [TBL] [Abstract][Full Text] [Related]
10. Nano-biphasic calcium phosphate/polyvinyl alcohol composites with enhanced bioactivity for bone repair via low-temperature three-dimensional printing and loading with platelet-rich fibrin. Song Y; Lin K; He S; Wang C; Zhang S; Li D; Wang J; Cao T; Bi L; Pei G Int J Nanomedicine; 2018; 13():505-523. PubMed ID: 29416332 [TBL] [Abstract][Full Text] [Related]
11. Laminated electrospun nHA/PHB-composite scaffolds mimicking bone extracellular matrix for bone tissue engineering. Chen Z; Song Y; Zhang J; Liu W; Cui J; Li H; Chen F Mater Sci Eng C Mater Biol Appl; 2017 Mar; 72():341-351. PubMed ID: 28024596 [TBL] [Abstract][Full Text] [Related]
12. Osteoimmunomodulatory properties of magnesium scaffolds coated with β-tricalcium phosphate. Chen Z; Mao X; Tan L; Friis T; Wu C; Crawford R; Xiao Y Biomaterials; 2014 Oct; 35(30):8553-65. PubMed ID: 25017094 [TBL] [Abstract][Full Text] [Related]
13. Natural stimulus responsive scaffolds/cells for bone tissue engineering: influence of lysozyme upon scaffold degradation and osteogenic differentiation of cultured marrow stromal cells induced by CaP coatings. Martins AM; Pham QP; Malafaya PB; Raphael RM; Kasper FK; Reis RL; Mikos AG Tissue Eng Part A; 2009 Aug; 15(8):1953-63. PubMed ID: 19327018 [TBL] [Abstract][Full Text] [Related]
14. Effect of nano-structured bioceramic surface on osteogenic differentiation of adipose derived stem cells. Xia L; Lin K; Jiang X; Fang B; Xu Y; Liu J; Zeng D; Zhang M; Zhang X; Chang J; Zhang Z Biomaterials; 2014 Oct; 35(30):8514-27. PubMed ID: 25002263 [TBL] [Abstract][Full Text] [Related]
15. Calcium-to-phosphorus releasing ratio affects osteoinductivity and osteoconductivity of calcium phosphate bioceramics in bone tissue engineering. Jin P; Liu L; Cheng L; Chen X; Xi S; Jiang T Biomed Eng Online; 2023 Feb; 22(1):12. PubMed ID: 36759894 [TBL] [Abstract][Full Text] [Related]
16. The influence hydroxyapatite nanoparticle shape and size on the properties of biphasic calcium phosphate scaffolds coated with hydroxyapatite-PCL composites. Roohani-Esfahani SI; Nouri-Khorasani S; Lu Z; Appleyard R; Zreiqat H Biomaterials; 2010 Jul; 31(21):5498-509. PubMed ID: 20398935 [TBL] [Abstract][Full Text] [Related]
17. Low-magnitude, high-frequency vibration promotes the adhesion and the osteogenic differentiation of bone marrow-derived mesenchymal stem cells cultured on a hydroxyapatite-coated surface: The direct role of Wnt/β-catenin signaling pathway activation. Chen B; Lin T; Yang X; Li Y; Xie D; Zheng W; Cui H; Deng W; Tan X Int J Mol Med; 2016 Nov; 38(5):1531-1540. PubMed ID: 28026000 [TBL] [Abstract][Full Text] [Related]
18. Construction of Vascularized Tissue Engineered Bone with nHA-Coated BCP Bioceramics Loaded with Peripheral Blood-Derived MSC and EPC to Repair Large Segmental Femoral Bone Defect. Wang H; Li X; Lai S; Cao Q; Liu Y; Li J; Zhu X; Fu W; Zhang X ACS Appl Mater Interfaces; 2023 Jan; 15(1):249-264. PubMed ID: 36548196 [TBL] [Abstract][Full Text] [Related]
19. [Influence of different sintering temperatures on mesoporous structure and ectopic osteogenesis of biphasic calcium phosphate ceramic granule materials]. Zhang D; Zong X; Guo X; Du H; Song G; Jin X Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2021 Jan; 35(1):95-103. PubMed ID: 33448206 [TBL] [Abstract][Full Text] [Related]
20. Effect of micro-nano-hybrid structured hydroxyapatite bioceramics on osteogenic and cementogenic differentiation of human periodontal ligament stem cell via Wnt signaling pathway. Mao L; Liu J; Zhao J; Chang J; Xia L; Jiang L; Wang X; Lin K; Fang B Int J Nanomedicine; 2015; 10():7031-44. PubMed ID: 26648716 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]