These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 31632378)

  • 1. Potential Implications of Changing Photosynthetic End-Products of Phytoplankton Caused by Sea Ice Conditions in the Northern Chukchi Sea.
    Yun MS; Joo HM; Kang JJ; Park JW; Lee JH; Kang SH; Sun J; Lee SH
    Front Microbiol; 2019; 10():2274. PubMed ID: 31632378
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The frequency and extent of sub-ice phytoplankton blooms in the Arctic Ocean.
    Horvat C; Jones DR; Iams S; Schroeder D; Flocco D; Feltham D
    Sci Adv; 2017 Mar; 3(3):e1601191. PubMed ID: 28435859
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Female Pacific walruses (Odobenus rosmarus divergens) show greater partitioning of sea ice organic carbon than males: Evidence from ice algae trophic markers.
    Koch CW; Cooper LW; Woodland RJ; Grebmeier JM; Frey KE; Stimmelmayr R; Magen C; Brown TA
    PLoS One; 2021; 16(8):e0255686. PubMed ID: 34411125
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Variability in spring phytoplankton blooms associated with ice retreat timing in the Pacific Arctic from 2003-2019.
    Waga H; Eicken H; Hirawake T; Fukamachi Y
    PLoS One; 2021; 16(12):e0261418. PubMed ID: 34914776
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atlantic walrus signal latitudinal differences in the long-term decline of sea ice-derived carbon to benthic fauna in the Canadian Arctic.
    Yurkowski DJ; Brown TA; Blanchfield PJ; Ferguson SH
    Proc Biol Sci; 2020 Dec; 287(1940):20202126. PubMed ID: 33290685
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temporal and spatial trends in marine carbon isotopes in the Arctic Ocean and implications for food web studies.
    de la Vega C; Jeffreys RM; Tuerena R; Ganeshram R; Mahaffey C
    Glob Chang Biol; 2019 Dec; 25(12):4116-4130. PubMed ID: 31498935
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Leads in Arctic pack ice enable early phytoplankton blooms below snow-covered sea ice.
    Assmy P; Fernández-Méndez M; Duarte P; Meyer A; Randelhoff A; Mundy CJ; Olsen LM; Kauko HM; Bailey A; Chierici M; Cohen L; Doulgeris AP; Ehn JK; Fransson A; Gerland S; Hop H; Hudson SR; Hughes N; Itkin P; Johnsen G; King JA; Koch BP; Koenig Z; Kwasniewski S; Laney SR; Nicolaus M; Pavlov AK; Polashenski CM; Provost C; Rösel A; Sandbu M; Spreen G; Smedsrud LH; Sundfjord A; Taskjelle T; Tatarek A; Wiktor J; Wagner PM; Wold A; Steen H; Granskog MA
    Sci Rep; 2017 Jan; 7():40850. PubMed ID: 28102329
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shine a light: Under-ice light and its ecological implications in a changing Arctic Ocean.
    Castellani G; Veyssière G; Karcher M; Stroeve J; Banas SN; Bouman AH; Brierley SA; Connan S; Cottier F; Große F; Hobbs L; Katlein C; Light B; McKee D; Orkney A; Proud R; Schourup-Kristensen V
    Ambio; 2022 Feb; 51(2):307-317. PubMed ID: 34822117
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon sources and trophic relationships of ice seals during recent environmental shifts in the Bering Sea.
    Wang SW; Springer AM; Budge SM; Horstmann L; Quakenbush LT; Wooller MJ
    Ecol Appl; 2016 Apr; 26(3):830-45. PubMed ID: 27411254
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Massive phytoplankton blooms under Arctic sea ice.
    Arrigo KR; Perovich DK; Pickart RS; Brown ZW; van Dijken GL; Lowry KE; Mills MM; Palmer MA; Balch WM; Bahr F; Bates NR; Benitez-Nelson C; Bowler B; Brownlee E; Ehn JK; Frey KE; Garley R; Laney SR; Lubelczyk L; Mathis J; Matsuoka A; Mitchell BG; Moore GW; Ortega-Retuerta E; Pal S; Polashenski CM; Reynolds RA; Schieber B; Sosik HM; Stephens M; Swift JH
    Science; 2012 Jun; 336(6087):1408. PubMed ID: 22678359
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in phytoplankton concentration now drive increased Arctic Ocean primary production.
    Lewis KM; van Dijken GL; Arrigo KR
    Science; 2020 Jul; 369(6500):198-202. PubMed ID: 32647002
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sea-ice melt determines seasonal phytoplankton dynamics and delimits the habitat of temperate Atlantic taxa as the Arctic Ocean atlantifies.
    Oldenburg E; Popa O; Wietz M; von Appen WJ; Torres-Valdes S; Bienhold C; Ebenhöh O; Metfies K
    ISME Commun; 2024 Jan; 4(1):ycae027. PubMed ID: 38515865
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Possible enhancement in ocean productivity associated with wildfire-derived nutrient and black carbon deposition in the Arctic Ocean in 2019-2021.
    Seok MW; Ko YH; Park KT; Kim TW
    Mar Pollut Bull; 2024 Apr; 201():116149. PubMed ID: 38364527
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ocean ambient noise on the Chukchi Plateau and its environmental correlates.
    Mo X; Wen H; Yang Y; Zhou H; Yin J; Han X; Chen H; Ruan H
    Mar Environ Res; 2023 Jun; 188():106024. PubMed ID: 37209443
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sea ice phenology and timing of primary production pulses in the Arctic Ocean.
    Ji R; Jin M; Varpe Ø
    Glob Chang Biol; 2013 Mar; 19(3):734-41. PubMed ID: 23504831
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biogeographic responses of the copepod Calanus glacialis to a changing Arctic marine environment.
    Feng Z; Ji R; Ashjian C; Campbell R; Zhang J
    Glob Chang Biol; 2018 Jan; 24(1):e159-e170. PubMed ID: 28869698
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomolecular profiles of Arctic sea-ice diatoms highlight the role of under-ice light in cellular energy allocation.
    Duncan RJ; Nielsen D; Søreide JE; Varpe Ø; Tobin MJ; Pitusi V; Heraud P; Petrou K
    ISME Commun; 2024 Jan; 4(1):ycad010. PubMed ID: 38328449
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Seafloor primary production in a changing Arctic Ocean.
    Attard K; Singh RK; Gattuso JP; Filbee-Dexter K; Krause-Jensen D; Kühl M; Sejr MK; Archambault P; Babin M; Bélanger S; Berg P; Glud RN; Hancke K; Jänicke S; Qin J; Rysgaard S; Sørensen EB; Tachon F; Wenzhöfer F; Ardyna M
    Proc Natl Acad Sci U S A; 2024 Mar; 121(11):e2303366121. PubMed ID: 38437536
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polar zoobenthos blue carbon storage increases with sea ice losses, because across-shelf growth gains from longer algal blooms outweigh ice scour mortality in the shallows.
    Barnes DKA
    Glob Chang Biol; 2017 Dec; 23(12):5083-5091. PubMed ID: 28643454
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chytrids dominate arctic marine fungal communities.
    Hassett BT; Gradinger R
    Environ Microbiol; 2016 Jun; 18(6):2001-9. PubMed ID: 26754171
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.