These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 31632433)

  • 1. To Splice or to Transcribe: SKIP-Mediated Environmental Fitness and Development in Plants.
    Cao Y; Ma L
    Front Plant Sci; 2019; 10():1222. PubMed ID: 31632433
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SKIP regulates environmental fitness and floral transition by forming two distinct complexes in Arabidopsis.
    Li Y; Yang J; Shang X; Lv W; Xia C; Wang C; Feng J; Cao Y; He H; Li L; Ma L
    New Phytol; 2019 Oct; 224(1):321-335. PubMed ID: 31209881
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The SNW Domain of SKIP Is Required for Its Integration into the Spliceosome and Its Interaction with the Paf1 Complex in Arabidopsis.
    Li Y; Xia C; Feng J; Yang D; Wu F; Cao Y; Li L; Ma L
    Mol Plant; 2016 Jul; 9(7):1040-50. PubMed ID: 27130079
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SKIP Confers Osmotic Tolerance during Salt Stress by Controlling Alternative Gene Splicing in Arabidopsis.
    Feng J; Li J; Gao Z; Lu Y; Yu J; Zheng Q; Yan S; Zhang W; He H; Ma L; Zhu Z
    Mol Plant; 2015 Jul; 8(7):1038-52. PubMed ID: 25617718
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A human splicing factor, SKIP, associates with P-TEFb and enhances transcription elongation by HIV-1 Tat.
    Brès V; Gomes N; Pickle L; Jones KA
    Genes Dev; 2005 May; 19(10):1211-26. PubMed ID: 15905409
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SKIP controls flowering time via the alternative splicing of SEF pre-mRNA in Arabidopsis.
    Cui Z; Tong A; Huo Y; Yan Z; Yang W; Yang X; Wang XX
    BMC Biol; 2017 Sep; 15(1):80. PubMed ID: 28893254
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alternative Splicing in Plant Genes: A Means of Regulating the Environmental Fitness of Plants.
    Shang X; Cao Y; Ma L
    Int J Mol Sci; 2017 Feb; 18(2):. PubMed ID: 28230724
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SKIP modifies gene expression by affecting both transcription and splicing.
    Nagai K; Yamaguchi T; Takami T; Kawasumi A; Aizawa M; Masuda N; Shimizu M; Tominaga S; Ito T; Tsukamoto T; Osumi T
    Biochem Biophys Res Commun; 2004 Apr; 316(2):512-7. PubMed ID: 15020246
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cancer-Associated Perturbations in Alternative Pre-messenger RNA Splicing.
    Shkreta L; Bell B; Revil T; Venables JP; Prinos P; Elela SA; Chabot B
    Cancer Treat Res; 2013; 158():41-94. PubMed ID: 24222354
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rice cyclophilin OsCYP18-2 is translocated to the nucleus by an interaction with SKIP and enhances drought tolerance in rice and Arabidopsis.
    Lee SS; Park HJ; Yoon DH; Kim BG; Ahn JC; Luan S; Cho HS
    Plant Cell Environ; 2015 Oct; 38(10):2071-87. PubMed ID: 25847193
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The human Ski-interacting protein functionally substitutes for the yeast PRP45 gene.
    Figueroa JD; Hayman MJ
    Biochem Biophys Res Commun; 2004 Jul; 319(4):1105-9. PubMed ID: 15194481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coupling between transcription and alternative splicing.
    Schor IE; Gómez Acuña LI; Kornblihtt AR
    Cancer Treat Res; 2013; 158():1-24. PubMed ID: 24222352
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arabidopsis SME1 Regulates Plant Development and Response to Abiotic Stress by Determining Spliceosome Activity Specificity.
    Huertas R; Catalá R; Jiménez-Gómez JM; Mar Castellano M; Crevillén P; Piñeiro M; Jarillo JA; Salinas J
    Plant Cell; 2019 Feb; 31(2):537-554. PubMed ID: 30696706
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Emerging insights into the coactivator role of NCoA62/SKIP in Vitamin D-mediated transcription.
    MacDonald PN; Dowd DR; Zhang C; Gu C
    J Steroid Biochem Mol Biol; 2004 May; 89-90(1-5):179-86. PubMed ID: 15225769
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Splicing of precursors to mRNA in higher plants: mechanism, regulation and sub-nuclear organisation of the spliceosomal machinery.
    Simpson GG; Filipowicz W
    Plant Mol Biol; 1996 Oct; 32(1-2):1-41. PubMed ID: 8980472
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ski interacts with the evolutionarily conserved SNW domain of Skip.
    Prathapam T; Kühne C; Hayman M; Banks L
    Nucleic Acids Res; 2001 Sep; 29(17):3469-76. PubMed ID: 11522815
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of alternative mRNA splicing: old players and new perspectives.
    Dvinge H
    FEBS Lett; 2018 Sep; 592(17):2987-3006. PubMed ID: 29856907
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alternative splicing: transcriptional regulatory network in agroforestry.
    Hussain SS; Abbas M; Abbas S; Wei M; El-Sappah AH; Sun Y; Li Y; Ragauskas AJ; Li Q
    Front Plant Sci; 2023; 14():1158965. PubMed ID: 37123829
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms and Regulation of Alternative Pre-mRNA Splicing.
    Lee Y; Rio DC
    Annu Rev Biochem; 2015; 84():291-323. PubMed ID: 25784052
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Splicing of pre-mRNA: mechanism, regulation and role in development.
    Rio DC
    Curr Opin Genet Dev; 1993 Aug; 3(4):574-84. PubMed ID: 8241769
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.