These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 31632436)

  • 1. On the Use of the Pearson Correlation Coefficient for Model Evaluation in Genome-Wide Prediction.
    Waldmann P
    Front Genet; 2019; 10():899. PubMed ID: 31632436
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genomic selection using regularized linear regression models: ridge regression, lasso, elastic net and their extensions.
    Ogutu JO; Schulz-Streeck T; Piepho HP
    BMC Proc; 2012 May; 6 Suppl 2(Suppl 2):S10. PubMed ID: 22640436
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of methods for the implementation of genome-assisted evaluation of Spanish dairy cattle.
    Jiménez-Montero JA; González-Recio O; Alenda R
    J Dairy Sci; 2013 Jan; 96(1):625-34. PubMed ID: 23102955
    [TBL] [Abstract][Full Text] [Related]  

  • 4. AUTALASSO: an automatic adaptive LASSO for genome-wide prediction.
    Waldmann P; Ferenčaković M; Mészáros G; Khayatzadeh N; Curik I; Sölkner J
    BMC Bioinformatics; 2019 Apr; 20(1):167. PubMed ID: 30940067
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adjusted adaptive Lasso for covariate model-building in nonlinear mixed-effect pharmacokinetic models.
    Haem E; Harling K; Ayatollahi SM; Zare N; Karlsson MO
    J Pharmacokinet Pharmacodyn; 2017 Feb; 44(1):55-66. PubMed ID: 28144841
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A proximal LAVA method for genome-wide association and prediction of traits with mixed inheritance patterns.
    Waldmann P
    BMC Bioinformatics; 2021 Oct; 22(1):523. PubMed ID: 34702175
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regularized group regression methods for genomic prediction: Bridge, MCP, SCAD, group bridge, group lasso, sparse group lasso, group MCP and group SCAD.
    Ogutu JO; Piepho HP
    BMC Proc; 2014; 8(Suppl 5):S7. PubMed ID: 25519521
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using selection index theory to estimate consistency of multi-locus linkage disequilibrium across populations.
    Wientjes YC; Veerkamp RF; Calus MP
    BMC Genet; 2015 Jul; 16():87. PubMed ID: 26187501
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An efficient unified model for genome-wide association studies and genomic selection.
    Li H; Su G; Jiang L; Bao Z
    Genet Sel Evol; 2017 Aug; 49(1):64. PubMed ID: 28836943
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of a Bayesian model including QTL markers increases prediction reliability when test animals are distant from the reference population.
    Ma P; Lund MS; Aamand GP; Su G
    J Dairy Sci; 2019 Aug; 102(8):7237-7247. PubMed ID: 31155255
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of using cow genomic information on accuracy and bias of genomic breeding values in a simulated Holstein dairy cattle population.
    Dehnavi E; Mahyari SA; Schenkel FS; Sargolzaei M
    J Dairy Sci; 2018 Jun; 101(6):5166-5176. PubMed ID: 29605309
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combined Performance of Screening and Variable Selection Methods in Ultra-High Dimensional Data in Predicting Time-To-Event Outcomes.
    Pi L; Halabi S
    Diagn Progn Res; 2018; 2():. PubMed ID: 30393771
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accuracy of genomic selection for alfalfa biomass yield in different reference populations.
    Annicchiarico P; Nazzicari N; Li X; Wei Y; Pecetti L; Brummer EC
    BMC Genomics; 2015 Dec; 16():1020. PubMed ID: 26626170
    [TBL] [Abstract][Full Text] [Related]  

  • 14. L2-Boosting algorithm applied to high-dimensional problems in genomic selection.
    González-Recio O; Weigel KA; Gianola D; Naya H; Rosa GJ
    Genet Res (Camb); 2010 Jun; 92(3):227-37. PubMed ID: 20667166
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of the lasso and the elastic net in genome-wide association studies.
    Waldmann P; Mészáros G; Gredler B; Fuerst C; Sölkner J
    Front Genet; 2013; 4():270. PubMed ID: 24363662
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accuracy of genomic breeding values for meat tenderness in Polled Nellore cattle.
    Magnabosco CU; Lopes FB; Fragoso RC; Eifert EC; Valente BD; Rosa GJ; Sainz RD
    J Anim Sci; 2016 Jul; 94(7):2752-60. PubMed ID: 27482662
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of random forest regression for prediction of breeding value from genomewide SNPs.
    Sarkar RK; Rao AR; Meher PK; Nepolean T; Mohapatra T
    J Genet; 2015 Jun; 94(2):187-92. PubMed ID: 26174666
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-wide prediction using Bayesian additive regression trees.
    Waldmann P
    Genet Sel Evol; 2016 Jun; 48(1):42. PubMed ID: 27286957
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Ranking Approach to Genomic Selection.
    Blondel M; Onogi A; Iwata H; Ueda N
    PLoS One; 2015; 10(6):e0128570. PubMed ID: 26068103
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Systematic bias of correlation coefficient may explain negative accuracy of genomic prediction.
    Zhou Y; Vales MI; Wang A; Zhang Z
    Brief Bioinform; 2017 Sep; 18(5):744-753. PubMed ID: 27436121
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.