These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 31633011)
1. Foreign Body Reaction to a Subcutaneously Implanted Self-Cleaning, Thermoresponsive Hydrogel Membrane for Glucose Biosensors. Abraham AA; Means AK; Clubb FJ; Fei R; Locke AK; Gacasan EG; Coté GL; Grunlan MA ACS Biomater Sci Eng; 2018; 4(12):4104-4111. PubMed ID: 31633011 [TBL] [Abstract][Full Text] [Related]
2. A self-cleaning, mechanically robust membrane for minimizing the foreign body reaction: towards extending the lifetime of sub-Q glucose biosensors. Means AK; Dong P; Clubb FJ; Friedemann MC; Colvin LE; Shrode CA; Coté GL; Grunlan MA J Mater Sci Mater Med; 2019 Jun; 30(7):79. PubMed ID: 31240399 [TBL] [Abstract][Full Text] [Related]
3. Self-cleaning membrane to extend the lifetime of an implanted glucose biosensor. Abraham AA; Fei R; Coté GL; Grunlan MA ACS Appl Mater Interfaces; 2013 Dec; 5(24):12832-8. PubMed ID: 24304009 [TBL] [Abstract][Full Text] [Related]
4. Design of a self-cleaning thermoresponsive nanocomposite hydrogel membrane for implantable biosensors. Gant RM; Abraham AA; Hou Y; Cummins BM; Grunlan MA; Coté GL Acta Biomater; 2010 Aug; 6(8):2903-10. PubMed ID: 20123136 [TBL] [Abstract][Full Text] [Related]
5. Self-Cleaning, Thermoresponsive P (NIPAAm-co-AMPS) Double Network Membranes for Implanted Glucose Biosensors. Fei R; Means AK; Abraham AA; Locke AK; Coté GL; Grunlan MA Macromol Mater Eng; 2016 Aug; 301(8):935-943. PubMed ID: 28529447 [TBL] [Abstract][Full Text] [Related]
6. Development of a self-cleaning sensor membrane for implantable biosensors. Gant RM; Hou Y; Grunlan MA; Coté GL J Biomed Mater Res A; 2009 Sep; 90(3):695-701. PubMed ID: 18563815 [TBL] [Abstract][Full Text] [Related]
8. Thermoresponsive nanocomposite double network hydrogels. Fei R; George JT; Park J; Grunlan MA Soft Matter; 2012 Jan; 8(2):481-487. PubMed ID: 23293658 [TBL] [Abstract][Full Text] [Related]
9. Refined control of thermoresponsive swelling/deswelling and drug release properties of poly(N-isopropylacrylamide) hydrogels using hydrophilic polymer crosslinkers. Kim S; Lee K; Cha C J Biomater Sci Polym Ed; 2016 Dec; 27(17):1698-1711. PubMed ID: 27573586 [TBL] [Abstract][Full Text] [Related]
10. Silicone-containing thermoresponsive membranes to form an optical glucose biosensor. Dong P; Singh KA; Soltes AM; Ko BS; Gaharwar AK; McShane MJ; Grunlan MA J Mater Chem B; 2022 Aug; 10(32):6118-6132. PubMed ID: 35916077 [TBL] [Abstract][Full Text] [Related]
11. A Soft Zwitterionic Hydrogel as Potential Coating on a Polyimide Surface to Reduce Foreign Body Reaction to Intraneural Electrodes. Gori M; Giannitelli SM; Vadalà G; Papalia R; Zollo L; Sanchez M; Trombetta M; Rainer A; Di Pino G; Denaro V Molecules; 2022 May; 27(10):. PubMed ID: 35630604 [TBL] [Abstract][Full Text] [Related]
12. Polyethylene glycol (PEG)-Poly(N-isopropylacrylamide) (PNIPAAm) based thermosensitive injectable hydrogels for biomedical applications. Alexander A; Ajazuddin ; Khan J; Saraf S; Saraf S Eur J Pharm Biopharm; 2014 Nov; 88(3):575-85. PubMed ID: 25092423 [TBL] [Abstract][Full Text] [Related]
13. Immunomodulation by mesenchymal stem cells combats the foreign body response to cell-laden synthetic hydrogels. Swartzlander MD; Blakney AK; Amer LD; Hankenson KD; Kyriakides TR; Bryant SJ Biomaterials; 2015 Feb; 41():79-88. PubMed ID: 25522967 [TBL] [Abstract][Full Text] [Related]
14. Fibrous capsule-resistant, controllably degradable and functionalizable zwitterion-albumin hybrid hydrogels. Liu Z; Zhou X; Chen Y; Ni Y; Zhu Z; Cao W; Chen K; Yan Y; Ji J; Zhang P Biomater Sci; 2024 Jan; 12(2):468-478. PubMed ID: 38086632 [TBL] [Abstract][Full Text] [Related]
15. A Layer-by-Layer Approach To Retain a Fluorescent Glucose Sensing Assay within the Cavity of a Hydrogel Membrane. Locke AK; Means AK; Dong P; Nichols TJ; Coté GL; Grunlan MA ACS Appl Bio Mater; 2018 Nov; 1(5):1319-1327. PubMed ID: 30474080 [TBL] [Abstract][Full Text] [Related]
16. Glucose sensor membranes for mitigating the foreign body response. Koh A; Nichols SP; Schoenfisch MH J Diabetes Sci Technol; 2011 Sep; 5(5):1052-9. PubMed ID: 22027297 [TBL] [Abstract][Full Text] [Related]
17. Ultra-strong thermoresponsive double network hydrogels. Fei R; George JT; Park J; Means AK; Grunlan MA Soft Matter; 2013 Mar; 9(10):2912-2919. PubMed ID: 33335560 [TBL] [Abstract][Full Text] [Related]
18. Polyacrylamide-based hydrogel coatings improve biocompatibility of implanted pump devices. Chan D; Maikawa CL; d'Aquino AI; Raghavan SS; Troxell ML; Appel EA J Biomed Mater Res A; 2023 Jul; 111(7):910-920. PubMed ID: 36861657 [TBL] [Abstract][Full Text] [Related]
19. Modulation of the foreign body response to implanted sensor models through device-based delivery of the tyrosine kinase inhibitor, masitinib. Avula MN; Rao AN; McGill LD; Grainger DW; Solzbacher F Biomaterials; 2013 Dec; 34(38):9737-46. PubMed ID: 24060424 [TBL] [Abstract][Full Text] [Related]
20. Synthesis and evaluation of injectable thermosensitive penta-block copolymer hydrogel (PNIPAAm-PCL-PEG-PCL-PNIPAAm) and star-shaped poly(CL─CO─LA)-b-PEG for wound healing applications. Oroojalian F; Jahanafrooz Z; Chogan F; Rezayan AH; Malekzade E; Rezaei SJT; Nabid MR; Sahebkar A J Cell Biochem; 2019 Oct; 120(10):17194-17207. PubMed ID: 31104319 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]