BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 31633332)

  • 1. Controllable Synthesis of Porous Cu-BTC@polymer Composite Beads for Iodine Capture.
    Zhao Q; Zhu L; Lin G; Chen G; Liu B; Zhang L; Duan T; Lei J
    ACS Appl Mater Interfaces; 2019 Nov; 11(45):42635-42645. PubMed ID: 31633332
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Porous ZIF-8@polyacrylonitrile composite beads for iodine capture.
    Yu Q; Jiang X; Cheng Z; Liao Y; Duan M
    RSC Adv; 2021 Sep; 11(48):30259-30269. PubMed ID: 35480247
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid Room-Temperature Preparation of Hierarchically Porous Metal-Organic Frameworks for Efficient Uranium Removal from Aqueous Solutions.
    Duan C; Zhang Y; Li J; Kang L; Xie Y; Qiao W; Zhu C; Luo H
    Nanomaterials (Basel); 2020 Aug; 10(8):. PubMed ID: 32781518
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pitch-based porous polymer beads for highly efficient iodine capture.
    Chen G; Zhao Q; Wang Z; Jiang M; Zhang L; Duan T; Zhu L
    J Hazard Mater; 2022 Jul; 434():128859. PubMed ID: 35405608
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of nanocellulose aerogels and Cu-BTC/nanocellulose aerogel composites for adsorption of organic dyes and heavy metal ions.
    Shaheed N; Javanshir S; Esmkhani M; Dekamin MG; Naimi-Jamal MR
    Sci Rep; 2021 Sep; 11(1):18553. PubMed ID: 34535724
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Porous MOF-808@PVDF beads for removal of iodine from gas streams.
    Wang L; Chen P; Dong X; Zhang W; Zhao S; Xiao S; Ouyang Y
    RSC Adv; 2020 Dec; 10(73):44679-44687. PubMed ID: 35516247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis and application of Cu-BTC@ZSM-5 composites as effective adsorbents for removal of toluene gas under moist ambience: kinetics, thermodynamics, and mechanism studies.
    Li M; Li Y; Li W; Liu F; Qi X; Xue M; Wang Y; Zhao C
    Environ Sci Pollut Res Int; 2020 Feb; 27(6):6052-6065. PubMed ID: 31865572
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Well-constructed a water stable Cu-BTC@TpPa-1 binary composite with excellent capture ability toward malachite green.
    Zou J; Li Y; Dong H; Ma N; Dai W
    Environ Sci Pollut Res Int; 2023 Dec; 30(59):124306-124315. PubMed ID: 37996590
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graphene oxide wrapped copper-benzene-1,3,5-tricarboxylate metal organic framework as efficient absorbent for gaseous toluene under ambient conditions.
    Dai Y; Li M; Liu F; Xue M; Wang Y; Zhao C
    Environ Sci Pollut Res Int; 2019 Jan; 26(3):2477-2491. PubMed ID: 30471061
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient adsorption of radioactive iodine by covalent organic framework/chitosan aerogel.
    Wang X; Meng R; Zhao S; Jing Z; Jin Y; Zhang J; Pi X; Du Q; Chen L; Li Y
    Int J Biol Macromol; 2024 Mar; 260(Pt 2):129690. PubMed ID: 38266855
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Copper benzene-1,3,5-tricarboxylate (Cu-BTC) metal-organic framework (MOF) and porous carbon composites as efficient carbon dioxide adsorbents.
    Liu Y; Ghimire P; Jaroniec M
    J Colloid Interface Sci; 2019 Feb; 535():122-132. PubMed ID: 30292103
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation of Highly Porous Thiophene-Containing DUT-68 Beads for Adsorption of CO
    Xiao S; Li M; Cong H; Wang L; Li X; Zhang W
    Polymers (Basel); 2021 Nov; 13(23):. PubMed ID: 34883580
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient sorption of Cu(2+) by composite chelating sorbents based on potato starch-graft-polyamidoxime embedded in chitosan beads.
    Dragan ES; Apopei Loghin DF; Cocarta AI
    ACS Appl Mater Interfaces; 2014 Oct; 6(19):16577-92. PubMed ID: 25191990
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Layer-by-layer assembly of Cu
    Zhang L; Sun J; Zhou Y; Zhong Y; Ying Y; Li Y; Liu Y; Zuhra Z; Huang C
    J Mater Chem B; 2017 Aug; 5(30):6138-6146. PubMed ID: 32264367
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel approach for removing brominated flame retardant from aquatic environments using Cu/Fe-based metal-organic frameworks: A case of hexabromocyclododecane (HBCD).
    Li X; Liu H; Jia X; Li G; An T; Gao Y
    Sci Total Environ; 2018 Apr; 621():1533-1541. PubMed ID: 29054625
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mixed-Metal Cu-BTC Metal-Organic Frameworks as a Strong Adsorbent for Molecular Hydrogen at Low Temperatures.
    Peedikakkal AMP; Aljundi IH
    ACS Omega; 2020 Nov; 5(44):28493-28499. PubMed ID: 33195899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ammonia Vapor Removal by Cu(3)(BTC)(2) and Its Characterization by MAS NMR.
    Peterson GW; Wagner GW; Balboa A; Mahle J; Sewell T; Karwacki CJ
    J Phys Chem C Nanomater Interfaces; 2009 Jul; 113(31):13906-13917. PubMed ID: 20161144
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Capture of iodide from wastewater by effective adsorptive membrane synthesized from MIL-125-NH
    El-Shahat M; Abdelhamid AE; Abdelhameed RM
    Carbohydr Polym; 2020 Mar; 231():115742. PubMed ID: 31888810
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of hierarchical porous carbon monoliths with incorporated metal-organic frameworks for enhancing volumetric based CO₂ capture capability.
    Qian D; Lei C; Hao GP; Li WC; Lu AH
    ACS Appl Mater Interfaces; 2012 Nov; 4(11):6125-32. PubMed ID: 23072343
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphonomethyl iminodiacetic acid functionalized metal organic framework supported PAN composite beads for selective removal of La(III) from wastewater: Adsorptive performance and column separation studies.
    Sinha S; De S; Mishra D; Shekhar S; Agarwal A; Sahu KK
    J Hazard Mater; 2022 Mar; 425():127802. PubMed ID: 34896724
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.