These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
301 related articles for article (PubMed ID: 31633439)
1. Lethal and mutagenic bystander effects in human fibroblast cell cultures subjected to low-energy-carbon ions. Suzuki M; Yasuda N; Kitamura H Int J Radiat Biol; 2020 Feb; 96(2):179-186. PubMed ID: 31633439 [No Abstract] [Full Text] [Related]
2. Genetic changes in progeny of bystander human fibroblasts after microbeam irradiation with X-rays, protons or carbon ions: the relevance to cancer risk. Autsavapromporn N; Plante I; Liu C; Konishi T; Usami N; Funayama T; Azzam EI; Murakami T; Suzuki M Int J Radiat Biol; 2015 Jan; 91(1):62-70. PubMed ID: 25084840 [TBL] [Abstract][Full Text] [Related]
3. Gap junction communication and the propagation of bystander effects induced by microbeam irradiation in human fibroblast cultures: the impact of radiation quality. Autsavapromporn N; Suzuki M; Funayama T; Usami N; Plante I; Yokota Y; Mutou Y; Ikeda H; Kobayashi K; Kobayashi Y; Uchihori Y; Hei TK; Azzam EI; Murakami T Radiat Res; 2013 Oct; 180(4):367-75. PubMed ID: 23987132 [TBL] [Abstract][Full Text] [Related]
4. Nitric oxide-mediated bystander signal transduction induced by heavy-ion microbeam irradiation. Tomita M; Matsumoto H; Funayama T; Yokota Y; Otsuka K; Maeda M; Kobayashi Y Life Sci Space Res (Amst); 2015 Jul; 6():36-43. PubMed ID: 26256626 [TBL] [Abstract][Full Text] [Related]
5. [Significance of radiation-induced bystander effects in radiation therapy]. Suzuki M Igaku Butsuri; 2014; 34(2):70-8. PubMed ID: 25693294 [TBL] [Abstract][Full Text] [Related]
6. Genomic instability induced in distant progeny of bystander cells depends on the connexins expressed in the irradiated cells. de Toledo SM; Buonanno M; Harris AL; Azzam EI Int J Radiat Biol; 2017 Oct; 93(10):1182-1194. PubMed ID: 28565963 [TBL] [Abstract][Full Text] [Related]
7. Impact of Co-Culturing with Fractionated Carbon-Ion-Irradiated Cancer Cells on Bystander Normal Cells and Their Progeny. Autsavapromporn N; Liu C; Konishi T Radiat Res; 2017 Sep; 188(3):335-341. PubMed ID: 28686544 [TBL] [Abstract][Full Text] [Related]
8. Role of DNA-PKcs in the bystander effect after low- or high-LET irradiation. Kanasugi Y; Hamada N; Wada S; Funayama T; Sakashita T; Kakizaki T; Kobayashi Y; Takakura K Int J Radiat Biol; 2007 Feb; 83(2):73-80. PubMed ID: 17357428 [TBL] [Abstract][Full Text] [Related]
9. Participation of gap junction communication in potentially lethal damage repair and DNA damage in human fibroblasts exposed to low- or high-LET radiation. Autsavapromporn N; Suzuki M; Plante I; Liu C; Uchihori Y; Hei TK; Azzam EI; Murakami T Mutat Res; 2013 Aug; 756(1-2):78-85. PubMed ID: 23867854 [TBL] [Abstract][Full Text] [Related]
10. Heavy-ion-induced bystander killing of human lung cancer cells: role of gap junctional intercellular communication. Harada K; Nonaka T; Hamada N; Sakurai H; Hasegawa M; Funayama T; Kakizaki T; Kobayashi Y; Nakano T Cancer Sci; 2009 Apr; 100(4):684-8. PubMed ID: 19469013 [TBL] [Abstract][Full Text] [Related]
11. Lack of evidence for low-LET radiation induced bystander response in normal human fibroblasts and colon carcinoma cells. Sowa MB; Goetz W; Baulch JE; Pyles DN; Dziegielewski J; Yovino S; Snyder AR; de Toledo SM; Azzam EI; Morgan WF Int J Radiat Biol; 2010 Feb; 86(2):102-13. PubMed ID: 20148696 [TBL] [Abstract][Full Text] [Related]
12. Bystander effect on cell growth stimulation in neoplastic HSGc cells induced by heavy-ion irradiation. Shao C; Aoki M; Furusawa Y Radiat Environ Biophys; 2003 Oct; 42(3):183-7. PubMed ID: 12920531 [TBL] [Abstract][Full Text] [Related]
13. Minisatellite and Hprt mutations in V79 cells irradiated with helium ions and gamma rays. Cherubinit R; Canova S; Favaretto S; Bruna V; Battivelli P; Celotti L Int J Radiat Biol; 2002 Sep; 78(9):791-7. PubMed ID: 12428920 [TBL] [Abstract][Full Text] [Related]
14. The bystander cell-killing effect mediated by nitric oxide in normal human fibroblasts varies with irradiation dose but not with radiation quality. Yokota Y; Funayama T; Mutou-Yoshihara Y; Ikeda H; Kobayashi Y Int J Radiat Biol; 2015 May; 91(5):383-8. PubMed ID: 25908166 [TBL] [Abstract][Full Text] [Related]
15. Biological effects of carbon ion beams with various LETs on budding yeast Saccharomyces cerevisiae. Matuo Y; Izumi Y; Furusawa Y; Shimizu K Mutat Res; 2018 Jul; 810():45-51. PubMed ID: 29146154 [TBL] [Abstract][Full Text] [Related]
16. Radiation response of primary human skin fibroblasts and their bystander cells after exposure to counted particles at low and high LET. Frankenberg D; Greif KD; Giesen U Int J Radiat Biol; 2006 Jan; 82(1):59-67. PubMed ID: 16546904 [TBL] [Abstract][Full Text] [Related]
17. Temporally distinct response of irradiated normal human fibroblasts and their bystander cells to energetic heavy ions. Hamada N; Ni M; Funayama T; Sakashita T; Kobayashi Y Mutat Res; 2008 Mar; 639(1-2):35-44. PubMed ID: 18082226 [TBL] [Abstract][Full Text] [Related]
18. Differential bystander signaling between radioresistant chondrosarcoma cells and fibroblasts after x-ray, proton, iron ion and carbon ion exposures. Wakatsuki M; Magpayo N; Kawamura H; Held KD Int J Radiat Oncol Biol Phys; 2012 Sep; 84(1):e103-8. PubMed ID: 22537542 [TBL] [Abstract][Full Text] [Related]
19. Bystander effect-induced mutagenicity in HPRT locus of CHO cells following BNCT neutron irradiation: characteristics of point mutations by sequence analysis. Kinashi Y; Suzuki M; Masunaga S; Ono K Appl Radiat Isot; 2009 Jul; 67(7-8 Suppl):S325-7. PubMed ID: 19375934 [TBL] [Abstract][Full Text] [Related]
20. Modeling the biological response of normal human cells, including repair processes, to fractionated carbon beam irradiation. Wada M; Suzuki M; Liu C; Kaneko Y; Fukuda S; Ando K; Matsufuji N J Radiat Res; 2013 Sep; 54(5):798-807. PubMed ID: 23449640 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]