These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 31633584)
1. Perivascular Adipose Tissue Modulation of Neurogenic Vasorelaxation of Rat Mesenteric Arteries. Chang HH; Yang SS; Chang SJ J Cardiovasc Pharmacol; 2020 Jan; 75(1):21-30. PubMed ID: 31633584 [TBL] [Abstract][Full Text] [Related]
2. Sensory innervation of perivascular adipose tissue: a crucial role in artery vasodilatation and leptin release. Abu Bakar H; Robert Dunn W; Daly C; Ralevic V Cardiovasc Res; 2017 Jul; 113(8):962-972. PubMed ID: 28371926 [TBL] [Abstract][Full Text] [Related]
3. Proton acts as a neurotransmitter for nicotine-induced adrenergic and calcitonin gene-related peptide-containing nerve-mediated vasodilation in the rat mesenteric artery. Kawasaki H; Eguchi S; Miyashita S; Chan S; Hirai K; Hobara N; Yokomizo A; Fujiwara H; Zamami Y; Koyama T; Jin X; Kitamura Y J Pharmacol Exp Ther; 2009 Sep; 330(3):745-55. PubMed ID: 19483072 [TBL] [Abstract][Full Text] [Related]
4. Endothelial nitric oxide modulates perivascular sensory neurotransmission in the rat isolated mesenteric arterial bed. Ralevic V Br J Pharmacol; 2002 Sep; 137(1):19-28. PubMed ID: 12183327 [TBL] [Abstract][Full Text] [Related]
5. Perivascular Adipose Tissue Contributes to the Modulation of Vascular Tone in vivo. Saxton SN; Withers SB; Nyvad J; Mazur A; Matchkov V; Heagerty AM; Aalkjær C J Vasc Res; 2019; 56(6):320-332. PubMed ID: 31550717 [TBL] [Abstract][Full Text] [Related]
6. Hydrogen Protons Modulate Perivascular Axo-axonal Interactions in the Middle Cerebral Artery of Rats. Huang KF; Chang HH; Hsieh CH; Shei-Dei Yang S; Chang SJ J Cardiovasc Pharmacol; 2020 Jul; 76(1):112-121. PubMed ID: 32265369 [TBL] [Abstract][Full Text] [Related]
7. Role of Sympathetic Nerves and Adipocyte Catecholamine Uptake in the Vasorelaxant Function of Perivascular Adipose Tissue. Saxton SN; Ryding KE; Aldous RG; Withers SB; Ohanian J; Heagerty AM Arterioscler Thromb Vasc Biol; 2018 Apr; 38(4):880-891. PubMed ID: 29496660 [TBL] [Abstract][Full Text] [Related]
8. Interleukin-10 does not contribute to the anti-contractile nature of PVAT in health. Kumar RK; Kaiser LM; Rockwell CE; Watts SW Vascul Pharmacol; 2021 Jun; 138():106838. PubMed ID: 33540122 [TBL] [Abstract][Full Text] [Related]
9. Time-Dependent Differences in the Influence of Perivascular Adipose Tissue on Vasomotor Functions in Metabolic Syndrome. Kagota S; Iwata S; Maruyama K; McGuire JJ; Shinozuka K Metab Syndr Relat Disord; 2017 Jun; 15(5):233-239. PubMed ID: 28358621 [TBL] [Abstract][Full Text] [Related]
10. Age-related decrease of calcitonin gene-related peptide-containing vasodilator innervation in the mesenteric resistance vessel of the spontaneously hypertensive rat. Kawasaki H; Saito A; Takasaki K Circ Res; 1990 Sep; 67(3):733-43. PubMed ID: 2397578 [TBL] [Abstract][Full Text] [Related]
11. Endogenous calcitonin gene-related peptide (CGRP) mediates adrenergic-dependent vasodilation induced by nicotine in mesenteric resistance arteries of the rat. Shiraki H; Kawasaki H; Tezuka S; Nakatsuma A; Kurosaki Y Br J Pharmacol; 2000 Jul; 130(5):1083-91. PubMed ID: 10882393 [TBL] [Abstract][Full Text] [Related]
12. Effects of Obesity on Perivascular Adipose Tissue Vasorelaxant Function: Nitric Oxide, Inflammation and Elevated Systemic Blood Pressure. Aghamohammadzadeh R; Unwin RD; Greenstein AS; Heagerty AM J Vasc Res; 2015; 52(5):299-305. PubMed ID: 26910225 [TBL] [Abstract][Full Text] [Related]
13. Role of perivascular adipose tissue-derived methyl palmitate in vascular tone regulation and pathogenesis of hypertension. Lee YC; Chang HH; Chiang CL; Liu CH; Yeh JI; Chen MF; Chen PY; Kuo JS; Lee TJ Circulation; 2011 Sep; 124(10):1160-71. PubMed ID: 21844078 [TBL] [Abstract][Full Text] [Related]
14. Neurogenic vascular responses in male mouse mesenteric vascular beds. Fujiwara H; Hashikawa-Hobara N; Wake Y; Takatori S; Goda M; Higuchi H; Zamami Y; Tangsucharit P; Kawasaki H J Pharmacol Sci; 2012; 119(3):260-70. PubMed ID: 22785022 [TBL] [Abstract][Full Text] [Related]
15. Impaired capsaicin-induced relaxation in diabetic mesenteric arteries. Zhang Y; Chen Q; Sun Z; Han J; Wang L; Zheng L J Diabetes Complications; 2015 Aug; 29(6):747-54. PubMed ID: 26055306 [TBL] [Abstract][Full Text] [Related]
16. Augmented sensory-motor vasodilatation of the rat mesenteric arterial bed after chronic infusion of the P1-purinoceptor antagonist, DPSPX. Relevic V; Rubino A; Burnstock G Br J Pharmacol; 1996 Aug; 118(7):1675-80. PubMed ID: 8842431 [TBL] [Abstract][Full Text] [Related]
17. Neurogenic vasodilation and release of calcitonin gene-related peptide (CGRP) from perivascular nerves in the rat mesenteric artery. Fujimori A; Saito A; Kimura S; Watanabe T; Uchiyama Y; Kawasaki H; Goto K Biochem Biophys Res Commun; 1989 Dec; 165(3):1391-8. PubMed ID: 2610699 [TBL] [Abstract][Full Text] [Related]
18. Modulation of sympathoadrenergic contractions by perivascular adipose tissue in mesenteric arteries of rats with different level of body adiposity. Zemancikova A; Torok J; Balis P; Valovic P; Ulicna O; Chomova M J Physiol Pharmacol; 2020 Aug; 71(4):. PubMed ID: 33316773 [TBL] [Abstract][Full Text] [Related]
19. NPY modulates neurotransmission of CGRP-containing vasodilator nerves in rat mesenteric arteries. Kawasaki H; Nuki C; Saito A; Takasaki K Am J Physiol; 1991 Sep; 261(3 Pt 2):H683-90. PubMed ID: 1653537 [TBL] [Abstract][Full Text] [Related]